
Tech note

E*4080 IP Gateway Amazon Web Services MQTT Quick Start

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 1

Introduction

This guide will walk through the process of connecting your
EE4080 or EN4080 IP gateway to the Amazon Web Services
(AWS) Internet of Things (IoT) platform. It will assume that you
already have an account with AWS and permissions to access/
change settings in the IoT dashboard.

Contact Information

For questions, contact Inovonics technical support:
• E-mail: support@inovonics.com.
• Phone: (800) 782-2709; (303) 939-9336.

Materials Needed

• An EN4080 or EE4080 IP gateway with a LICMQTT license.
• An AWS account.
• The ability to connect to Amazon servers outside of your

firewall.
• Traffic allowed on the following ports:
 Port 9000 (TCP for OTA upgrades)
 Port 123 (UDP for NTP sync)
 Port 8883 (standard MQTT port)
 Port 443 (HTTPS)

• A USB flash drive (must use MBR partition format, not GPT).
• A computer.
• EchoStream transmitters.

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 2

Setup Credentials for the IP Gateway on AWS

This procedure will setup credentials for the gateway on AWS.
When completed, you will have the AWS certificate files to put on
your IP gateway using the USB flash drive.
1. On your computer, navigate to the AWS IoT dashboard and

select “Manage.”

Figure 1 Select “Manage” on the AWS IoT dashboard.

2. Select “Create” in the top right of the AWS IoT dashboard.

3. Select “Create a Single Thing.”

4. Give your thing a name
• No other fields are required.

Note: The thing name and client-id must match exactly for
monitoring tools within AWS to work correctly.

5. Select "Next."

6. Select "One-Click certificate creation."

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 3

7. Download all files except for the public key.

Figure 2 Download certificates and keys.

Note: The “Download” link opens a new tab where you select the
files.

8. Click “Activate.”

9. Click “Done.”
• The thing has been created with AWS.

10. Navigate to the “Secure” tab and select “Policies.”

Figure 3 Select “Policies” on the AWS IoT dashboard.

11. Select "Create."

12. Give your policy a name.

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 4

13. Set policies according to your standards, or enter the following:
• Action: iot:*
• Resource ARN: *

14. Check “Allow” under “Create.”

15. Click "Create."

16. Navigate to the “Secure” tab and select "Certificates.”

17. Click the three dots on the certificate you generated and select
“Attach Policy.”

• The alphanumeric code on your certificate will match the key
files you downloaded in step 7.

Figure 4 Attach a policy.

18. Select your new policy and click “Attach.”

19. Click the three dots on the certificate you generated and select
“Attach thing.”

Connect the IP Gateway to AWS

This procedure will establish a connection between your IP
gateway and AWS.
1. Referring to the IP gateway’s installation instructions, download

the configuration .yaml file and gateway license file onto a
blank USB flash drive.

2. Keeping the AWS IoT dashboard open as a reference, copy the
three files downloaded earlier onto the USB flash drive.

• All of the files that need to be on the USB flash drive are
shown in Figure 5. These include the configuration .yaml file,

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 5

the IP gateway license file, and three files downloaded in step
7.

Figure 5 The files necessary on your USB flash drive.

3. Open the configuration file on the USB flash drive in any text
editor.

• The following is an example of a configuration file, with
unrelated lines omitted for clarity. The reporter is specified, and
then followed with a section for reporter settings, as in the
following configuration file example:

radio:
redundant_message_window: 10.0
redundant_message_first_hop: exclude
redundant_message_signal_margin: include

plugin:
awsmqtt:

host: acvqxe0o75onu-ats.iot.us-west-
2.amazonaws.com
port: 8883
root_ca: root.pem
certificate: certificate.pem.crt
private_key: private.pem.key
client_id_prefix: inovonics
client_id_fields: model-number, serial-
number-unit
reporting_format: json
publish_message_topic: messages
publish_discovery_topic: discovery-messages
subscribe_conf_topic: settings
publish_conf_topic: configuration
connection_status_topic: connection-messages
batching: false
qos: 1

network:
ethernet:

power: enabled
address: 192.168.90.50
netmask: 255.255.254.0
gateway: 192.168.90.1
dns: 192.168.1.35

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 6

wifi:
country: US
power: disabled
ssid: Guest
passphrase: Welcome
address: dhcp

4. Enter configuration information in each field of the configuration
file.

Note: Any field marked with an * can be changed later remotely;
any field not marked with an * must be edited using the USB flash
drive.

• radio: Configure options for redundant message suppression:
 redundant_message_window: A message with the same

payload as a recent (in seconds) message will be considered
redundant and not buffered. This is set to 10 seconds by
default.

 redundant_message_first_hop: Consider different first hops
are non-redundant messages if include; first hop ignored if
exclude (default).

 redundant_message_signal_margin: Consider a strong
signal margin is a non-redundant message if include
(default); signal margin ignored if exclude.

 To receive the fewest (if any) redundant messages, disable
the two parameters above with exclude. Enable the former to
learn all repeaters that heard a message; enable the latter to
learn the strong signal margin heard.

• host: this will be a url, which can be found in the IoT
dashboard.
 Under the "Manage" tab, select "Things", then your new

thing, then "Interact."
 Locate the url ending in ".amazonaws.com" which on the top

of the page. This is your host.
• port: This indicates which port your IP gateway communicates

on and will be 8883 in almost all cases.
• root_ca: This is the name of the root cert file placed on the

USB flash drive.
• certificate: This is the name of the device’s certificate file

placed on the USB flash drive.
• private_key: This is the name of the private key placed on the

USB flash drive.
• client_id_prefix: This is the string for your client id to start with.
• client_id_fields: This is a list of values which will be appended

to the base client_id_prefix with dashes. Possible values:
“mac-wired”, “model-number”, “serial-number-board” and
“serial-number-unit”. See the example on page 5 and the
following table:

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 7

Note: Do not type information about your gateway here.

• *publish_message_topic: This is the topic your device will push
its messages to; it will be used to receive messages in AWS.

• subscribe_conf_topic: This is the topic your device will receive
messages from, and is used to change settings remotely. If
you will not be configuring settings remotely this can be left
blank.

• publish_conf_topic: The IP gateway will send an up-to-date
copy of your configuration settings after each modification.
This can be the same as subscribe_conf_topic.

• *discovery_mode: If true, this will activate discovery mode and
send messages on your defined publish_discovery_topic. This
feature times out after 30 minutes and must be reactivated.
Discovery mode cannot be activated by USB; it must activated
over MQTT.

• *publish_discovery_topic: Messages from unregistered
devices will transmit on this topic.

• connection_status_topic: The topic that receives messages on
a connection status change. All devices can use the same
topic for this. Each message also includes a client_id.

• qos: This stands for quality of service and is a part of MQTT. It
will be an integer (0 or 1). A setting of 1 is recommended in
most cases. This impacts most messages, but discovery mode
messages always use a QOS of 0. A QOS of 2 is not currently
supported by AWS, and cannot be used here.

• *txids: This is a list of txids to collect messages from.
• batching: If true, this sends messages in groups to save

resources. This is recommended, as otherwise each message
will be transmitted separately.

• reporting_format: This can be JSON or bytearray. Most of the
time it will be JSON.

Note: We suggest making a copy of this file once it is complete and
updating the file as changes are made remotely. This will give you
a backup of all settings.

5. Enter the network configuration information in the network
section.

Note: If the network section is not present, wired Ethernet is
configured for DHCP IP address assignment by default, and the
WiFi is disabled.

• Configure the wired Ethernet interface in the ethernet section:

client-id-prefix client-id-fields Resulting client ID

inovonics serial-number-unit inovonics-VP1234567

my-gateway my-gateway

inovonics serial-number-unit,
mac-wired

inovonics-VP1234567-F8:DC:7A:13:6D:1A

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 8

 power: Controls if wired Ethernet is to be enabled or disabled.
 address: This is the static IP address the gateway will use for

its wired Ethernet port. To use DHCP for IP address
assignment and network interface configuration, specify a
value of dhcp; in this case, the following three settings can be
omitted.

 netmask: The network mask for the attached network.
 gateway: The gateway of the attached network.
 dns: The address of the desired DNS server.

• Configure the WiFi interface in the wifi section:
 country: The two character ISO country code in which the

gateway resides; e.g. US for the United States.

Note: See https://en.wikipedia.org/wiki/ISO_3166-1_alpha-2 for a
full list of ISO country codes.

 power: Controls if 2.4GHz WiFi is to be enabled or disabled.
 ssid: This is the name of the WiFi network to connect to.
 passphrase: The passphrase of the WPA/2 Wifi network to

connect to. Leave empty for an open network.
 address: The static IP address the gateway will use for its

wired Ethernet port. To use DHCP for IP address assignment
and network interface configuration, specify a value of dhcp;
in this case, the following three settings can be omitted.

 netmask: The network mask for the attached network.
 gateway: The gateway of the attached network.
 dns: The address of the desired DNS server.

6. Referring to the IP gateway’s installation instructions, use the
USB flash drive to boot the IP gateway. The IP gateway should
now be connected to AWS.

• The orange connection light on the IP gateway should light
and remain illuminated after booting completes.

Test Connection

1. Select “Test” on the IoT dashboard.

2. Input the topic specified in your configuration file for
“pub_msg_topic” in the “Subscription topic” field.

3. Click “Subscribe to topic.” Messages should begin to appear,
as long as transmitters are sending messages to the IP
gateway.

Change Settings

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 9

This section describes how to change settings on an IP gateway
that is already in use.
Your device can receive settings via messages over the
subscribe_conf_topic specific in the config file. This can be done in
a variety of ways, but we'll showcase the simplest method here.
1. Navigate to the "Test" tab of AWS IoT dashboard.

2. Enter the name of your subscribe_conf_topic.

3. Click "Subscribe to topic"
• This will use your configured QOS, so be sure to match your

configured QOS setting with the QOS setting here.

4. Add the amended settings in valid JSON.

5. Click "Publish to topic."

Figure 6 Update settings received
The change should take effect almost instantly. Each time a
modification is made to settings via MQTT, a message will be sent
on your publish_conf_topic that shows the current state of each
editable setting, including the most recent change.
update-status can be:

• Success: Configuration was updated successfully.
• Warning: Configuration was updated but with potential

problems.
• Failure: Configuration failed to adopt new settings.

Note: Settings changes overwrite existing settings, they do not
append. For example, if you're adding a txid, send the complete list
of txids, not just the new addition.

Note: Minimize topic changes as they can interrupt connectivity
with the cloud and create a large queue on the IP gateway.

Note: Sending only “{}” to the device will return the current settings
without any modification.

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 10

Store Message Data

This section will show a basic use case to store message data in
DynamoDB. This is only an example of a possible next step. If
you're familiar with using IoT devices in AWS, this section can be
skipped.
1. Select the “Act” tab on the AWS IoT dashboard and click

“Create” to start a new rule.

2. Configure settings as desired. Following are the minimum
settings required.

Figure 7 Configure rule settings.

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 11

3. Navigate to “Set one or more actions.”

Figure 8 Add an action.

4. Select “Insert a message into a DynamoDB table.”

5. Set a Hash key value.

6. Select a role and update it.

7. Click “Add action.”After that, you can create the rule.

8. Check the AWS "Act" tab and ensure your rule is listed as
enabled.

Connection Status

If a connection status topic has been configured
(connection_status_topic), then the IP gateway will publish
messages to this topic when its connection status has changed.
The message is a brief description of the connection status. For
example:

{
"client_id": "inovonics-EN4080-VP123456789",
"connection_status": "Connected",
"message": "The gateway has established a
connection to the broker."

}

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 12

• client_id is the IP gateway's client id as configured by the
client.

• connection_status is the new status for the connection.
• Connected if the IP gateway is now connected to the broker.
• Disconnected if the IP gateway has cleanly disconnected from

the broker.
• Dropped if the IP gateway has unexpectedly lost connection to

the broker (using the MQTT Last Will & Testament
functionality).

Inovonics Transmitter and Repeater Messages

RF messages are published on the configured topics in JSON
format as a list of zero or more message dictionaries. It is
recommended to use a JSON library to parse them into a more
friendly data structure for your programming language. If using
environmental transmitters, ensure your JSON library supports
floating point numbers, including Infinity, as those values may be
included. The Pythonjson module and the jq command are known
to support floating point numbers correctly. In the following sections
are examples of security, submetering, environmental, and
repeater messages. Each message will include at least these
fields:

• client_id is the IP gateway's client id as configured by the
client.

• dispatch-type is one of the following:
 Historical: Message was received while the IP gateway was

offline, sent once reconnected.
 Realtime: Message was sent to the MQTT broker as soon as

it was received from the EchoStream network.
 Batch: Message was received recently but held for the batch

interval (15 minutes) before being sent with other received
messages.

 Discovery: Message for potentionally unregistered device
was sent as soon as it was received from the EchoStream
network.

• format is one of the following:
 json: The message has been parsed into a JSON dictionary.
 bytearray: The message is left as a list of byte values,

unparsed (see the EchoStream Developers Guide for
parsing).

• market is the kind of device that sent the message; either
security, submetering, environmental, or repeater.

• message is the RF message itself.
• network-type is the type of RF network the message was

received from; usually Echostream.
• timestamp is the when the message was received from the RF

network.

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 13

• txid is the serial number of the device that sent the message.

Security Transmitter RF Message Example
[{"client-id": "inovonics-EN4080-VP123456789",
"dispatch-type": "Realtime",

"format": "json", "market": "Security",
"message": {"header": "InboundComplete",
"metadata": {"firstHopUid": {"market": {"name":
"Repeater"}, "serialNumber": 2204027},
"hopCount": 1,
"originatorUid": {"market": {"name":
"Security"}, "serialNumber": 2685902},
"traceCount": 0, "traceUidList": []},
"payload": {"mcb": 62,
"name": "SecurityApplicationPayload", "pti": 40,
"status": {"alarm0": false, "alarm1": false,
"alarm2": false, "alarm3": false, "cleanMe":
false, "eolTamper": false, "lowBattery": false,
"reset": false, "sleep": false, "stat0bit0":
false, "stat0bit1": false, "stat0bit7": false,
"stat1bit4": false, "stat1bit5": false,
"supervision": true, "tamper": true}},
"signal": {"level": 26, "margin": 26}},
"network-type": "echostream", "timestamp":
"2019-08-22T20:28:44.632521", "txid":
"2685902"},

...]

Submetering Transmitter RF Message Example
[{"client-id": "inovonics-EN4080-VP123456789",
"dispatch-type": "Realtime",

"format": "json", "market": "Submetering",
"message": {"header": "InboundComplete",
"metadata": {"firstHopUid": {"market": {"name":
"NetworkCoordinator"}, "serialNumber":
12177055},
"hopCount": 0,
"originatorUid": {"market": {"name":
"Submetering"}, "serialNumber": 12910813},
"traceCount": 0, "traceUidList": []},
"payload": {"count": 0,
"leakDetectCount": 0,
"mcb": 61,
"name": "SubmeteringApplicationPayload", "pti":
1,

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 14

"status": {"deltaTotalizer": false,
"lowBattery": false, "rapidTransmissionMode":
false, "reset": false,
"shipping": false, "stat0bit0": false,
"stat0bit1": false, "stat0bit7": false,
"stat1bit0": false, "stat1bit1": false,
"stat1bit2": false, "stat1bit3": false,
"stat1bit4": false, "stat1bit5": false,
"supervision": false, "tamper": true}},
"signal": {"level": 67, "margin": 66}},
"network-type": "echostream", "timestamp":
"2019-08-22T21:20:28.944177", "txid":
"12910813"},

...]

Environmental Transmitter RF Message Example
[{"client-id": "inovonics-EN4080-VP123456789",
"dispatch-type": "Realtime",

"format": "json", "market": "Environmental",
"message": {"header": "InboundComplete",
"metadata": {"firstHopUid": {"market": {"name":
"Repeater"}, "serialNumber": 10360932},
"hopCount": 1,
"originatorUid": {"market": {"name":
"Environmental"}, "serialNumber": 4148924},
"traceCount": 0, "traceUidList": []},
"payload": {"data": [75.63200378417969,
45.04424285888672],
"mcb": 60,
"name": "EnvironmentalApplicationPayload",
"pti": 21,
"status": {"alarm0": false, "alarm1": false,
"alarm2": false, "alarm3": false, "binaryInput":
false, "deltaSensor1": false, "deltaSensor2":
true, "lowBattery": false, "reset": false,
"stat0bit0": false, "stat0bit1": false,
"stat0bit2": false, "stat0bit7": false,
"stat1bit4": false, "supervision": false,
"tamper": false}},
"signal": {"level": 25, "margin": 25}},
"network-type": "echostream", "timestamp":
"2019-08-22T20:28:46.040172", "txid":
"4148924"},

...]

Repeater RF Message Example
[{"client-id": "inovonics-EN4080-VP182120006",
"dispatch-type": "Realtime",

8/28/19 TN1114F © Inovonics, 2019 - www.inovonics.com 15

"format": "json", "market": "Repeater",
"message": {"header": "InboundComplete",
"metadata": {"firstHopUid": {"market": {"name":
"NetworkCoordinator"}, "serialNumber":
13033338},
"hopCount": 0,
"originatorUid": {"market": {"name":
"Repeater"}, "serialNumber": 16004699},
"traceCount": 0, "traceUidList": []},
"payload": {"mcb": 65,
"name": "RepeaterApplicationPayload",
"repeaterPayload": {"name":
"RepeaterStatusWithBroadcastRepeater", "pti": 0,
"status": {"jammed": false, "layer": 0,
"limitedScanningRemotes": false,
"lossOfLinePower": true, "lowBattery": false,
"neighborListAssigned": false, "noChange":
false, "onlyOneNeighbor": false, "reset": false,
"stat0bit0": false, "stat0bit2": false,
"statusAck": false, "tamper": false}}},
"signal": {"level": 66, "margin": 62}},
"network-type": "echostream", "timestamp":
"2019-08-22T21:23:22.509580", "txid":
"16004699"},

...]

