
Tech note

E*4080 IP Gateway Amazon Web Services MQTT Quick Start

11/19/18 TN1114C © Inovonics, 2018 - www.inovonics.com 1

Introduction

This guide will walk through the process of connecting your E*4080
IP gateway to the Amazon Web Services (AWS) Internet of Things
(IoT) platform. It will assume that you already have an account with
AWS and permissions to access/change settings in the IoT
dashboard.

Contact Information

For questions, contact Inovonics technical support:
• E-mail: support@inovonics.com.
• Phone: (800) 782-2709; (303) 939-9336.

Materials Needed

• An AWS account.
• The ability to connect to Amazon servers outside of your

firewall.
• Traffic allowed on the following ports:
 Port 9000 (TCP for OTA upgrades)
 Port 123 (UDP for NTP sync)
 Port 8883 (standard MQTT port)
 Port 443 (HTTPS)

• USB flash drive.
• A computer.

11/19/18 TN1114C © Inovonics, 2018 - www.inovonics.com 2

Setup Credentials for the IP Gateway on AWS

This procedure will setup credentials for the gateway on AWS.
When completed, you will have the AWS certificate files to put on
your IP gateway using the USB flash drive.
1. On your computer, navigate to the AWS IoT dashboard and

select “Manage.”

Figure 1 Select “Manage” on the AWS IoT dashboard.

2. Select “Create” in the top right of the AWS IoT dashboard.

3. Select “Create a Single Thing.”

4. Give your thing a name
• No other fields are required.

5. Select "Next."

6. Select "One-Click certificate creation."

11/19/18 TN1114C © Inovonics, 2018 - www.inovonics.com 3

7. Download all files except for the public key.

Figure 2 Download certificates and keys.

Note: The “Download” link opens a new tab where you select the
files.

8. Click “Activate.”

9. Click “Done.”
• The thing has been created with AWS.

10. Navigate to the “Secure” tab and select “Policies.”

Figure 3 Select “Policies” on the AWS IoT dashboard.

11. Select "Create."

12. Give your policy a name.

11/19/18 TN1114C © Inovonics, 2018 - www.inovonics.com 4

13. Set policies according to your standards, or enter the following:
• Action: iot:*
• Resource ARN: *

14. Check “Allow” under “Create.”

15. Click "Create."

16. Navigate to the “Secure” tab and select "Certificates.”

17. Click the three dots on the certificate you generated and select
“Attach Policy.”

• The alphanumeric code on your certificate will match the key
files you downloaded in step 7.

Figure 4 Attach a policy.

18. Select your new policy and click “Attach.”

19. Click the three dots on the certificate you generated and select
“Attach thing.”

Connect the IP Gateway to AWS

This procedure will establish a connection between your IP
gateway and AWS.
1. Referring to the IP gateway’s installation instructions, download

the configuration .yaml file and gateway license file onto a
blank USB flash drive.

2. Keeping the AWS IoT dashboard open as a reference, copy the
three files downloaded earlier onto the USB flash drive.

• All of the files that need to be on the USB flash drive are
shown in Figure 5. These include the configuration .yaml file,

11/19/18 TN1114C © Inovonics, 2018 - www.inovonics.com 5

the IP gateway license file, and three files downloaded in step
7.

Figure 5 The files necessary on your USB flash drive.

3. Open the configuration file on the USB flash drive in any text
editor.

• Figure 6 is an example of a configuration file, with unrelated
lines omitted for clarity. The reporter is specified, and then
followed with a section for reporter settings:

Figure 6 Configuration file example.

4. Enter configuration information in each field of the configuration
file.

Note: Any field marked with an * can be changed later remotely;
any field not marked with an * must be edited using the USB flash
drive.

• host: this will be a url, which can be found in the IoT
dashboard.
 Under the "Manage" tab, select "Things", then your new

thing, then "Interact."
 Locate the url ending in ".amazonaws.com" which on the top

of the page. This is your host.
• port: This indicates which port your IP gateway communicates

on and will be 8883 in almost all cases.
• root_ca: This is the name of the root cert file placed on the

USB flash drive.
• certificate: This is the name of the device’s certificate file

placed on the USB flash drive.
• private_key: This is the name of the private key placed on the

USB flash drive.
• client_id_prefix: This is the string for your client id to start with.

11/19/18 TN1114C © Inovonics, 2018 - www.inovonics.com 6

• client_id_fields: This is a list of values which will be appended
to the base client_id_prefix with dashes. Possible values:
“mac-wired”, “model-number”, “serial-number-board” and
“serial-number-unit”. See example table below:

• *publish_message_topic: This is the topic your device will push
its messages to; it will be used to receive messages in AWS.

• subscribe_conf_topic: This is the topic your device will receive
messages from, and is used to change settings remotely. If
you will not be configuring settings remotely, this can be left
blank.

• publish_conf_topic: The IP gateway will send an up-to-date
copy of your configuration settings after each modification.
This can be the same as subscribe_conf_topic.

• *discovery_mode: If true, this will activate discovery mode and
send messages on your defined publish_discovery_topic. This
feature times out after 30 minutes and must be reactivated.

• *publish_discovery_topic: Messages from unregistered
devices will transmit on this topic.

• qos: This stands for quality of service and is a part of MQTT. It
will be an integer (0 or 1). A setting of 1 is recommended in
most cases. This impacts most messages, but discovery mode
messages always use a QOS of 0. A QOS of 2 is not currently
supported by AWS, and cannot be used here.

• *txids: This is a list of txids to collect messages from.
• batching: If true, this sends messages in groups to save

resources. This is recommended, as otherwise each message
will be transmitted separately.

• reporting_format: This can be JSON or bytearray. Most of the
time it will be JSON.

Note: We suggest making a copy of this file once it is complete and
updating the file as changes are made remotely. This will give you
a backup of all settings.

5. Referring to the IP gateway’s installation instructions, use the
USB flash drive to boot the IP gateway. The IP gateway should
now be connected to AWS.

• The orange connection light on the IP gateway should light
and remain illuminated after booting completes.

Test Connection

client-id-prefix client-id-fields Resulting client ID

inovonics serial-number-unit inovonics-VP1234567

my-gateway my-gateway

inovonics serial-number-unit,
mac-wired

inovonics-VP1234567-F8:DC:7A:13:6D:1A

11/19/18 TN1114C © Inovonics, 2018 - www.inovonics.com 7

1. Select “Test” on the IoT dashboard.

2. Input the topic specified in your configuration file for
“pub_msg_topic” in the “Subscription topic” field.

3. Click “Subscribe to topic.” Messages should begin to appear,
as long as transmitters are sending messages to the IP
gateway.

Change Settings

This section describes how to change settings on an IP gateway
that is already in use.
Your device can receive settings via messages over the
subscribe_conf_topic specific in the config file. This can be done in
a variety of ways, but we'll showcase the simplest method here.
1. Navigate to the "Test" tab of AWS IoT dashboard.

2. Enter the name of your subscribe_conf_topic.

3. Click "Subscribe to topic"
• This will use your configured QOS, so be sure to match your

configured QOS setting with the QOS setting here.

4. Add the amended settings in valid JSON.

5. Click "Publish to topic."

Figure 7 Update settings received
The change should take effect almost instantly. Each time a
modification is made to settings via MQTT, a message will be sent
on your publish_conf_topic that shows the current state of each
editable setting, including the most recent change.
update-status can be:

• Success: Configuration was updated successfully.

11/19/18 TN1114C © Inovonics, 2018 - www.inovonics.com 8

• Warning: Configuration was updated but with potential
problems.

• Failure: Configuration failed to adopt new settings.

Note: Settings changes overwrite existing settings, they do not
append. For example, if you're adding a txid, send the complete list
of txids, not just the new addition.

Note: Minimize topic changes as they can interrupt connectivity
with the cloud and create a large queue on the IP gateway.

Note: Sending only “{}” to the device will return the current settings
without any modification.

Store Message Data

This section will show a basic use case to store message data in
DynamoDB. This is only an example of a possible next step. If
you're familiar with using IoT devices in AWS, this section can be
skipped.
1. Select the “Act” tab on the AWS IoT dashboard and click

“Create” to start a new rule.

2. Configure settings as desired. Following are the minimum
settings required.

Figure 8 Configure rule settings.

11/19/18 TN1114C © Inovonics, 2018 - www.inovonics.com 9

3. Navigate to “Set one or more actions.”

Figure 9 Add an action.

4. Select “Insert a message into a DynamoDB table.”

5. Set a Hash key value.

6. Select a role and update it.

7. Click “Add action.”After that, you can create the rule.

8. Check the AWS "Act" tab and ensure your rule is listed as
enabled.

11/19/18 TN1114C © Inovonics, 2018 - www.inovonics.com 10

Inovonics Transmitter and Repeater Message
Examples

This section contains information that will be helpful when creating
rules for processing incoming data.
All messages function like a list of dictionaries in Python. They will
come wrapped in square brackets, contain at least one message,
and will be separated by commas.

Note: Currently some historical messages will have a TXID of 0.
These do not contain any data from the sensor and can be ignored
on the receiving end.

Transmitter RF Message
[{
"message": {'
 "header": "InboundComplete",
 "signal": {
"margin": 38,
 "level": 38
 },
 "metadata": {
 "traceCount": 0,
 "originatorUid": {
 "serialNumber": 16249316,
 "market": {
 "name": "Submetering"
 }
 },
 "firstHopUid": {
 "serialNumber": 10894274,
 "market": {
 "name": "NetworkCoordinator"
 }
 },
 "traceUidList": [],
 "hopCount": 0
 },
 "payload": {
 "leakDetectCount": 100,
 "mcb": 61,
 "status": {
 "stat1bit4": false,
 "tamper": true,
 "stat1bit0": false,
 "stat1bit1": false,
 "stat0bit1": false,
 "stat0bit0": false,
 "rapidTransmissionMode": false,
 "stat1bit5": false,
 "stat0bit7": false,
 "lowBattery": true,
 "shipping": false,
 "deltaTotalizer": false,
 "supervision": true,
 "stat1bit3": false,
 "stat1bit2": false,
 "reset": false
 },

11/19/18 TN1114C © Inovonics, 2018 - www.inovonics.com 11

 "count": 0,
 "name": "SubmeteringApplicationPayload",
 "pti": 1
 }
 },
 "market": "Submetering",
 "had_exception": false,
 "network-type": "echostream",
 "timestamp": "2018-07-11T19:14:50.065485",
"txid": 10377745,
 "app_data_submetering": {
 "count_changed": false,
 "rapid_message": false
 }
}]

Repeater RF Message

[{
 'app_data_submetering': {
 'count_changed': False,
 'rapid_message': False
 },
 'message': {
 'metadata': {
 'traceUidList': [],
 'hopCount': 0,
 'firstHopUid': {
 'market': {
 'name': 'NetworkCoordinator'
 },
 'serialNumber': 10894274
 },
 'originatorUid': {
 'market': {
 'name': 'Repeater'
 },
 'serialNumber': 8086348
 },
 'traceCount': 0
 },
 'header': 'InboundComplete',
 'signal': {
 'level': 15,
 'margin': 15
 },
 'payload': {
 'name': 'RepeaterApplicationPayload',
 'repeaterPayload': {
 'name': 'RepeaterStatusWithBroadcastRepeater',
 'pti': 0,
 'status': {
 'tamper': True,
 'noChange': True,
 'neighborListAssigned': False,
 'limitedScanningRemotes': False,
 'lowBattery': False,
 'onlyOneNeighbor': False,
 'jammed': False,
 'stat0bit0': False,
 'layer': 0,

11/19/18 TN1114C © Inovonics, 2018 - www.inovonics.com 12

 'stat0bit2': False,
 'lossOfLinePower': False,
 'reset': False,
 'statusAck': False
 }
 },
 'mcb': 65
 }
 },
 'network-type': 'echostream',
 'market': 'Repeater',
 'txid': 8086348,
 'timestamp': '2018-06-26T14:54:59.190750'
}]

