
 
  

 

 

 

 

 

Inovonics Cloud 
Integration Guide 

 

Preface 
Trademarks and Copyrights 

• EchoStream® is a registered trademark of Inovonics Corporation 

Contact Information 

• Inovonics Technical Services. support@inovonics.com or 1.800.782.2709. 

Revision History 

Revision Name Description Date 

0.1 Kevin Stoner Initial Revision 12/22/21 

0.2 Kevin Stoner Accepting Todd’s Review 12/30/21 

0.3 Kevin Stoner Added Hardware Part Numbers Table 12/31/21 

0.4 Kevin Stoner Adding Cooper’s Review Changes 1/12/22 

0.5 Kevin Stoner Fixing Date 1/12/22 

0.6 Kevin Stoner Updating example URL 1/12/22 

0.7 Kevin Hardy Merged content from various sources 7/19/23 

0.8 Kevin Hardy Including Advanced Location & Widget guides 9/20/2023 

0.9 Kevin Hardy Including MQTT YAML content 10/25/2023 

1.0 Kevin Hardy Including Asset Tags & Staff Badges 4/19/2024 

1.1 Kevin Hardy Resolved navigation & formatting issues 5/10/2024 

 
  

mailto:support@inovonics.com


 

1 
 

 

Inovonics Cloud Integration Guide 

Table of Contents 
1 Purpose ...................................................................................................................................................... 4 
2 System Overview........................................................................................................................................ 4 
3 Hardware Components ............................................................................................................................... 5 

3.1 Fixed Transmitters ............................................................................................................................... 5 
3.1.1 Roaming Devices ......................................................................................................................... 5 
3.1.2 Mobile Duress Transmitters .......................................................................................................... 5 
3.1.3 Asset Tags & Staff Badge ............................................................................................................ 5 

3.2 Locators .............................................................................................................................................. 6 
3.3 Repeaters ............................................................................................................................................ 6 
3.4 Gateway .............................................................................................................................................. 6 

4 Organization Hierarchy ............................................................................................................................... 7 
4.1 Organizations ...................................................................................................................................... 7 
4.2 Users ................................................................................................................................................... 7 
4.3 User Types .......................................................................................................................................... 8 
4.4 Sites .................................................................................................................................................... 8 
4.5 Buildings .............................................................................................................................................. 8 
4.6 Floors .................................................................................................................................................. 9 
4.7 Floorplan ............................................................................................................................................. 9 
4.8 Units .................................................................................................................................................... 9 
4.9 Devices ............................................................................................................................................... 9 

5 Integration Options ................................................................................................................................... 10 
5.1 API .................................................................................................................................................... 10 
5.2 Embedded Widgets ........................................................................................................................... 10 
5.3 Inovonics Cloud Services Web Application ........................................................................................ 10 

6 RESTful API ............................................................................................................................................. 11 
6.1 Documentation .................................................................................................................................. 11 
6.2 REST API Requirements ................................................................................................................... 11 
6.3 Request Format ................................................................................................................................. 11 
6.4 Response Format .............................................................................................................................. 12 
6.5 Referencing Objects .......................................................................................................................... 13 
6.6 Enum APIs ........................................................................................................................................ 13 
6.7 Import/Export APIs ............................................................................................................................ 13 
6.8 Report APIs ....................................................................................................................................... 13 
6.9 Creating Relationships APIs .............................................................................................................. 13 
6.10 Common API endpoints ................................................................................................................. 14 



 

2 
 

 

Inovonics Cloud Integration Guide 

6.10.1 Create a site ............................................................................................................................... 14 
6.10.2 Add a gateway to the site ........................................................................................................... 14 
6.10.3 Add a building to the site ............................................................................................................ 14 
6.10.4 Add a floor to the site.................................................................................................................. 14 
6.10.5 Add a unit to the site ................................................................................................................... 14 
6.10.6 Add a device to the site .............................................................................................................. 14 
6.10.7 Associate a floor to a building ..................................................................................................... 14 
6.10.8 Associate a unit to a floor ........................................................................................................... 14 
6.10.9 Associate a device to a unit ........................................................................................................ 14 

6.11 MQTT Feed ................................................................................................................................... 15 
6.11.1 MQTT Integration Setup ............................................................................................................. 15 
6.11.2 Connecting to the MQTT Broker ................................................................................................. 15 
6.11.3 MQTT Subscriptions ................................................................................................................... 15 
6.11.4 Creating an MQTT Integration .................................................................................................... 16 

6.12 API ................................................................................................................................................. 16 
6.13 ICS ................................................................................................................................................ 17 

7 Feature Guide .......................................................................................................................................... 18 
7.1 Advanced Location ............................................................................................................................ 18 

7.1.1 Find Roaming Device ................................................................................................................. 18 
7.1.2 Find Roaming Device with Multiple Locations ............................................................................. 20 
7.1.3 Find All Roaming Device’s Location ........................................................................................... 21 
7.1.4 Find All Roaming Devices and Multiple Locations ...................................................................... 22 
7.1.5 Geofencing ................................................................................................................................. 24 
7.1.6 Roaming Device Schedules........................................................................................................ 26 
7.1.7 Breaches .................................................................................................................................... 28 
7.1.8 Breach Comments ...................................................................................................................... 30 

7.2 Fall Detection for Senior Living .......................................................................................................... 31 
7.2.1 Overview .................................................................................................................................... 31 
7.2.2 Fall Detection Mode ................................................................................................................... 32 
7.2.3 Retrieve Fall Detection Mode (API) ............................................................................................ 32 
7.2.4 Retrieve Fall Detection Mode (MQTT) ........................................................................................ 33 

8 Embedded Widgets .................................................................................................................................. 34 
8.1 Overview ........................................................................................................................................... 34 
8.2 Available Widgets .............................................................................................................................. 34 

8.2.1 Find Roaming Device ................................................................................................................. 34 
8.2.2 Operational Insights Dashboards ............................................................................................... 34 



 

3 
 

 

Inovonics Cloud Integration Guide 

8.3 Authorization ..................................................................................................................................... 35 
8.3.1 Request ...................................................................................................................................... 35 
8.3.2 Request Parameters .................................................................................................................. 35 
8.3.3 Response ................................................................................................................................... 35 
8.3.4 Response Fields ......................................................................................................................... 35 

8.4 Requesting a Widget ......................................................................................................................... 36 
8.4.1 Request Structure ...................................................................................................................... 36 
8.4.2 Request Parameters & Headers ................................................................................................. 36 
8.4.3 Request Examples ..................................................................................................................... 37 
8.4.4 Response Example .................................................................................................................... 38 

8.5 Embedding the Widget ...................................................................................................................... 38 
8.5.1 IFrame Settings & Styles ............................................................................................................ 38 

9 Appendix .................................................................................................................................................. 39 
9.1 Connectivity Loss .............................................................................................................................. 39 

9.1.1 Message Examples .................................................................................................................... 40 
9.2 Postman ............................................................................................................................................ 41 
9.3 Inovonics Hardware Part Numbers .................................................................................................... 44 

9.4 MQTT YAML file content ................................................................................................................... 45 
 

  



 

4 
 

 

Inovonics Cloud Integration Guide 

1 Purpose 
 
This document is intended to provide high level guidance for integrating your application with the Inovonics 
Cloud Service Ecosystem. 

2 System Overview 
The Inovonics Cloud system is designed with the objective of allowing the configuration and monitoring of 
Inovonics devices through the cloud.  Some common uses of the system are receiving locations of alarm 
events, processing of fall detection alarm events and associated algorithm data, and general device health 
monitoring. 

 

 

In the above diagram, a custom developed application may leverage RESTful APIs to configure and set up 
a site with devices in the Inovonics Cloud.  Physical devices on each site will communicate wirelessly over 
the EchoStream® network, which will be heard and sent up to the Inovonics Cloud via a gateway.  From 
there, important events such as alarm locations will be sent to the Inovonics MQTT Broker. A custom 
MQTT client can then subscribe to the broker and handle incoming events in the appropriate manner.  
Each of these components will be discussed in further detail later in this document. 

  



 

5 
 

 

Inovonics Cloud Integration Guide 

3 Hardware Components 
3.1 Fixed Transmitters 
 
Fixed transmitters are Inovonics EchoStream® transmitting devices that are designed to remain in a specific 
location at a site.  Examples of fixed transmitters are door sensors and smoke detectors.  These devices 
transmit events over the EchoStream® network which will be collected by the Gateway on the site. 

3.1.1 Roaming Devices 
3.1.2 Mobile Duress Transmitters 
 

Mobile Duress Transmitters have several form factors, like wearable pendants & fob style buttons.  
These devices transmit alarms via the EchoStream® network, and also report their location via BLE to 
Locator devices. 

 

3.1.3 Asset Tags & Staff Badge 
 

Asset Tags & Staff Badges are devices that track location using BLE beaconing. These devices do not 
transmit via EchoStream®, and instead work in conjunction with the Locator devices. When a BLE 
message is heard by a Locator, the Locator then converts the message into EchoStream® and sends 
the device location through the network. 

  



 

6 
 

 

Inovonics Cloud Integration Guide 

 

3.2 Locators 
Locators are a BLE to EchoStream® “bridge” that can be installed throughout a site to locate Bluetooth 
equipped mobile pendants when they alarm.  The locator listens for BLE messages from pendants on the 
site and will convert those messages to EchoStream®.  Those messages can be used to determine the 
closest locator to a mobile pendant when it is activated. 

 

3.3 Repeaters 
Repeaters listen for EchoStream® messages and repeat them by re-transmitting the message. They are 
used for extending the range of the EchoStream® network on the site.  To meet certain standards, 
repeaters on some sites must run in Directed Messaging mode. 

 

3.4 Gateway 
The Gateway is the connection between the site and the cloud.  The Gateway will listen for, and collect 
EchoStream® messages using the built in receiver, and will relay them up to the Inovonics Cloud for further 
processing and storage.  In the case of network issues between the gateway and the site, the gateway can 
store messages until it is able to communicate with the cloud once again.  The gateway must be added to a 
site in the Inovonics Cloud in order to pull site configuration information and send up EchoStream® traffic 
from devices. 
 

 

This image shows where the Authorization Code and model can be found on the Gateway device. The 
serial number and MAC address label can be found on the Gateway device, Gateways built in 2020 and 
earlier (VP20*, VP19*, VP18*) will have a label with a barcode, and gateways built in 2022 and after 
(VP22*, VP23*) will have the label without barcode. 



 

7 
 

 

Inovonics Cloud Integration Guide 

Note: Inovonics will add Organization, and customers can add sites, buildings, devices, etc. Inovonics will 
also create one admin user; additional users are created by customers. 

 

4 Organization Hierarchy 
The organization hierarchy as pictured below demonstrates the relationship of different objects within the 
Inovonics Cloud.  When creating new sites, it is recommended to follow this pattern in order to avoid any 
issues with compatibility. 

 

4.1 Organizations 
At the topmost level, everything belongs to an organization.  An organization can be considered a 
partner of Inovonics.  Organizations are created by Inovonics as well as the first few users within the 
organization, to get the partner started.  From there it is on the partner to create the subsequent users 
and sites.  

4.2 Users 
Users are members of the organization that need to create, view, or modify sites.  Users are NOT the 
end customer (ex: senior living community residents, duress pendant carrier).  Every user within an 
organization requires a unique email address, even if the user is a service account user.  There are 
three different permission levels users can be assigned: Administrator, Technician, and Viewer.  
Administrators are allowed to create and modify sites, as well as administer other users within the 
organization.  Technicians are allowed to create and modify sites but cannot administer users.  Viewers 



 

8 
 

 

Inovonics Cloud Integration Guide 

can only view sites but cannot make any changes otherwise.  Besides assigning roles, Administrators 
can optionally restrict access for other users to certain sites over certain timeframes.  
 

 

4.3 User Types 
 

User Types define permission levels and can be thought of as User Roles. 

Administrator: Ability to add and revoke user access at an organizational level. Administrators will be 
able to assign user access to sites within their organization. Administrators will be able to add and 
remove users from the organization. Administrators also will have all the capabilities that Technicians 
and Viewers do. 

Technician: Ability to Add/Edit sites within an organization based on the amount of access they are 
granted by an administrator. Technicians also will have all the capabilities that Viewers do. 

Viewer: Ability to view sites based on the amount of access they are granted by an administrator. They 
cannot modify data in the Inovonics Cloud Services ecosystem. 

 

4.4 Sites 
Sites are a specific place where an EchoStream® network of Inovonics devices are installed (e.g. a 
hospital).  Sites may contain many devices, with the only restriction being that each site must only have 
one gateway. 

4.5 Buildings 
Buildings can be considered a type of folder to organize the site.  A smaller site may only have one 
building, but larger sites may have multiple buildings.  While it is not necessary to leverage buildings, it 
is recommended to tie locators, repeaters, and fixed transmitters to a building, as it helps to better 
define the location of each device.  Mobile pendants should not be tied to a building as they may move 
freely across the site. 



 

9 
 

 

Inovonics Cloud Integration Guide 

4.6 Floors 
A designated level in a building that identifies the vertical location of a collection of units, e.g., first floor, 
second floor, third floor, etc. 

4.7 Floorplan 
A technical drawing (to scale) showing a view from above, of the relationships between rooms, spaces, 
and other physical features at one level of a structure. 

4.8 Units 
A Unit is a designated space within a building that represents a specific operating space.   

For senior living communities a 'Unit' should be used to designate a resident’s apartment (ex: “Unit 
208”) as well as specific areas like hallways, cafeterias, recreation rooms, and so on. 

For other applications a 'Unit' could be used to designate an office suite, warehouse area, or any other 
specific area where an Inovonics sensor device will be installed. 

 

4.9 Devices 
The types of devices on each site are the same as defined in the Hardware Components section of this 
document.  When adding devices, each device must first be added directly to the site (POST request).  
From there to add a device to a Unit, the relationship can be created between a device and Unit within 
the same site (PUT request).  Apart from the gateway, devices must be registered by entering the TXID 
of the device.  This is the number found usually on a sticker on the outside casing of the device.  Sites 
must have a unique set of TXIDs on them, however it is possible to use the same TXID on two separate 
sites. 

 

  



 

10 
 

 

Inovonics Cloud Integration Guide 

5 Integration Options 
Inovonics Offers these options for integrations: API, Embedded Widgets, and the Inovonics Cloud Service 
web front end (ICS Web).  All integrations work together and may be used in conjunction with one another. 

5.1 API 
 

The API integration allows your application to be the interface with your users while utilizing the features of 
Inovonics Cloud Services. 

• Fully functional 

• Total control of your user’s experience (UX) 

• Standard development cycle to implement features 

5.2 Embedded Widgets 
 

The API also enables your application to embed fully functional features into your application, drastically 
reducing development efforts. 

• Embed feature UX + logic in your applications 

• Minimal development to implement 

5.3 Inovonics Cloud Services Web Application 
 

You may also utilize the fully functional web application Inovonics Cloud Services. 

• Turnkey web application 

• Zero development to implement 

• Inovonics branded & disconnected from partner systems. 

 

  

https://security.inovonics.com/


 

11 
 

 

Inovonics Cloud Integration Guide 

6 RESTful API 
The RESTful API is used for configuring sites and administering users.  Site configuration involves 
registering the devices that will be used on the site to the cloud.  When the configuration is created or 
changed, it is pushed down to the gateway on the site.  Configuration information is also used to send out 
more detailed information during events and alerts.  The RESTful APIs also allows for the administration of 
users.  Users can be given different permission levels and access to be able to view and modify sites within 
their organization. 

 

6.1 Documentation 
API Documentation: Refer to the documentation link under the Documentation section. 
Swagger Editor: https://editor.swagger.io/  

 

6.2 REST API Requirements 
The URL for making API calls will be provided by Inovonics once the Organization is set up for a partner.  
All API requests require that a user is authenticated via OAuth 2 and that the connection is secured by 
TLS.  Users making requests must have the correct access and permissions to the resource they are 
requesting.  For instance, a Viewer may not make a request to rename a site.  Upon authenticating with the 
API, the user will be provided with a Bearer token that can be used in subsequent requests to verify their 
authentication. 

 

6.3 Request Format 
With a few exceptions, every API request (and response) will be in JSON format.  To make a request, it is 
required to specify the content-type of the body (usually “application/json”) in the headers of the request.  
There are a few API requests that accept no request body as well as an import API that accepts 
spreadsheets.  More information about these requests can be found in the API documentation.  The 
authentication (bearer) token should also be placed in the header of each request.  Every API endpoint in 
the Inovonics Cloud ends in a forward slash (“/”) character, if the character is left off an error will be 
returned.  In general, HTTP verbs are used to perform the associated commands.  To add a new site, the 
user would send a POST request.  To remove the site, the user would send a DELETE request.  To modify 
the site, the user would send a PUT request.  To retrieve information about a site, the user would send a 
GET request. 

  

https://editor.swagger.io/


 

12 
 

 

Inovonics Cloud Integration Guide 

 

Example Request to Add Site: 

Request:  
 
POST https://security-api.inovonics.com/v1/organizations/<organization_id>/sites/ 
 

 

Headers:  
 
Authentication: Bearer <access key> 
Content-Type: application/json 

 

Body: 
 
{ 
 “name”: “a new site”, 
 “code”: “ans”, 
  “timezone”: “US_EASTERN” 
} 

 

6.4 Response Format 
 

The response to a request also follows standard HTTP protocol.  For example, if a resource does not exist, 
a 404 NOT FOUND response will be returned.  Other common error codes returned are 409 CONFLICT for 
attempting to create something that already exists (e.g., a transmitter with a duplicate TXID), 403 
FORBIDDEN, 401 UNAUTHORIZED, and 400 INVALID DATA for attempting to make a poorly formatted 
request.  For valid requests, a 200, 201 or 204 may be returned.  A 201 indicates that something new was 
created in the case of a POST request, and a 204 indicates that there is no return body in the response. 
Please refer to the API documentation for a complete list of request and response bodies and codes. 

  



 

13 
 

 

Inovonics Cloud Integration Guide 

 

Example Response to Add Site: 

Response: 
201 Created 

 

Body: 
NOTE: Some fields have been left out of this example for brevity. 
{ 
 “address”: “”, 
 “code”: “abc”, 
 “name”: “a new site”, 
 … 
 “site_id”: “<site_id>”, 
 “timezone”: “US_EASTERN” 
} 

 

6.5 Referencing Objects 
Upon creation, all objects such as users, sites, devices, and buildings will generate a unique ID which is 
returned in the response.  The ID is formatted as a GUID and should be used to reference each object in 
subsequent API requests.  This ID should not be confused with the TXID of a device which is a separate ID 
used to tie a physical device to its cloud object representation.   

6.6 Enum APIs 
There are a few APIs that exist for the sole purpose of providing values that can be entered into other APIs.  
For example, a developer might call the transmitter model API to find what values they can use for the 
model of a new transmitter device.    

6.7 Import/Export APIs 
As an alternative to configuring a site with individual APIs, a user may leverage the import/export APIs to 
import in an Excel spreadsheet containing an entire site’s configuration.  To do this, the site must be 
created first using a POST command.  An export spreadsheet may then be created by doing a GET on 
/sites/<site_id>/export.  Once changes have been manually applied to the spreadsheet, it can be 
re-imported with a PUT on /sites/<site_id>/import/. 

6.8  Report APIs 
A few report APIs exist for the purpose of pulling historical data or snapshots in time.  These reports should 
not be leveraged for real time event handling.  Instead, the MQTT API should be used to respond to device 
events. 
 

6.9 Creating Relationships APIs 
All objects such as devices, buildings, floors and units must be added to the site initially with a POST 
request. After adding the object to the site, further relationships can be created by performing PUT 
requests between two objects. For example when adding locators, each locator must first be added directly 
to the site (POST request on /sites/<site_id>/transmitters/). From there in order to add a locator to a unit, 
the relationship can be created between a device and unit within the same site (PUT request on 
/sites/<site_id>/units/<unit_id>/transmitters/<transmitter_id>/). 

  



 

14 
 

 

Inovonics Cloud Integration Guide 

 

6.10  Common API endpoints 
All Inovonics Cloud Service integrations will rely on the foundations outlined below.  This guide assumes 
that your Organization has already been created. 

Please note that the top-level Organization can only be created by the Inovonics Technical Service team. 

 

6.10.1 Create a site 
Make a POST API call to the endpoint: /organizations/{organization_id}/sites/ with the required 
headers and body.  

6.10.2 Add a gateway to the site 
Using the above site_id add a gateway to this site using a POST API call to the endpoint: 
/sites/{site_id}/gateways/ with the required headers and body.  

6.10.3 Add a building to the site 
Using the above site_id add a building to this site using a POST API call to the endpoint: 
/sites/{site_id}/buildings/ with the required headers and body. 

6.10.4 Add a floor to the site 
Using the above site_id add a floor to this site using a POST API call to the endpoint: 
/sites/{site_id}/floors/ with the required headers and body. 

6.10.5 Add a unit to the site 
Using the above site_id add a unit to this site using a POST API call to the endpoint: 
/sites/{site_id}/units/ with the required headers and body. 

6.10.6 Add a device to the site 
Using the above site_id add a device (transmitter) to this site using a POST API call to the endpoint: 
/sites/{site_id}/transmitters/ with the required headers and body. 

 

Use the endpoints below to configure the correct hierarchy & relationships between these elements. 

 

6.10.7 Associate a floor to a building 
To add a floor to a building, make a PUT API call to the endpoint: 
/sites/{site_id}/buildings/{building_id}/floors/{floor_id}/ with the required headers. This will 
associate the given floor to the given building. 

6.10.8 Associate a unit to a floor 
To add a unit to a floor, make a PUT API call to the endpoint: 
/sites/{site_id}/floors/{floor_id}/units/{unit_id}/ with the required headers. This will associate 
the given unit to the given floor. 

6.10.9 Associate a device to a unit 
To add a device to the unit, make a PUT API call to the endpoint: 
/sites/{site_id}/units/{unit_id}/transmitters/{transmitter_id}/ with the required headers. This 
will associate the given device to the given unit.  



 

15 
 

 

Inovonics Cloud Integration Guide 

 

6.11 MQTT Feed 
To receive location and fall information for alarms as well as other device notifications, the Inovonics MQTT 
Feed can be leveraged.  Clients that are subscribed to the MQTT broker will receive events and 
notifications as the cloud processes them without having to poll the RESTful API for information, as this is a 
more efficient information exchange mechanism. 
 

Please refer to Appendix B for the YAML content for the MQTT Feed 

 

6.11.1 MQTT Integration Setup 
MQTT clients do not use the same authentication as the RESTful API, the authorization credentials 
(username/password) must be configured by creating an MQTT integration. There are two ways that MQTT 
integrations can be set up to allow a client to listen to MQTT traffic: at the site level, or at an organization 
level.  MQTT integrations at the site level will allow for a unique set of credentials to be assigned to each 
site.  These credentials can be used to connect and subscribe to MQTT traffic for a specific site.  
Alternatively, an organization level integration creates a single set of credentials for the entire organization 
that can listen to traffic for all sites within the organization.  Only one type of integration may be used at a 
time per organization, so either each site must have an individual integration or the organization itself must 
have one integration, but not both.  Each type of integration can be set up with RESTful APIs (see REST 
API documentation).  There are unique API calls for creating an organization level integration and site level 
integration respectively. 

 

6.11.2 Connecting to the MQTT Broker 
The MQTT broker URL will be provided by Inovonics upon requesting to do an MQTT integration.  The 
broker allows for both TLS encrypted and unencrypted connections, however it is highly recommended to 
use an encrypted connection for production sites.  Port details are available from the Inovonics Engineering 
team upon request. 

The Inovonics broker has a CA signed certificate that is used for encrypted connections. Currently the 
Inovonics MQTT Broker uses MQTT version 5.  To connect, the username and password configured in the 
MQTT integration will need to be used.  The client ID for the connection must be globally unique so it is 
recommended to use a random string of characters for the client ID.  In the future there may be further 
restrictions on the client IDs that can be used.  When connecting it is also recommended to set the “Clean 
Session” flag to False.  This will allow a client that disconnects to reconnect and receive any messages that 
it missed.  Currently the Inovonics MQTT broker will attempt to store unsent messages for up to 1 day, but 
this may vary significantly based on the broker storage that is available. 

 

6.11.3 MQTT Subscriptions 
MQTT Subscriptions can be made after connecting with the client.  In general, Inovonics recommends 
subscribing to MQTT topics with a QOS of 2 to prevent missing or duplicate messages.  Currently there is 
a common “status” topic that can be leveraged for determining the health of the cloud.  Every authenticated 
MQTT user automatically has access to this topic.  The rest of the topics are restricted by MQTT 
username.  This prevents an MQTT integration for one site from listening to traffic from another site.  All 
MQTT payloads are in JSON format. 



 

16 
 

 

Inovonics Cloud Integration Guide 

6.11.4 Creating an MQTT Integration 
 

To connect to the MQTT feed, an Integration entry is required.  This Integration can be created using the 
RESTful API or directly in the ICS web application. 

6.12  API 
 
Integrations can be scoped to an entire Organization, or for a specific site. 

ORG Scope: 
 
POST: https://test-security-
api.inovonics.com/v1/organizations/{{org_id}}/integration/ 
 
BODY: { 
  "type": "MQTT", 
  "additional_fields": { 
    "mqtt_username": "exampleusername", 
    "mqtt_password": "********" 
  } 
} 

 

Site Scope: 
 
POST: https://test-security-api.inovonics.com/v1/sites/{{site_id}}/integration/ 
 
BODY: { 
  "type": "MQTT", 
  "additional_fields": { 
    "mqtt_username": "exampleusername", 
    "mqtt_password": "********" 
  } 
} 

 

 

Key Concepts 

• Organization scoped Integrations have access to MQTT messages for all Sites for the Organization. 
• Site scoped Integrations have access to MQTT messages for only a singular Site. 

 

  



 

17 
 

 

Inovonics Cloud Integration Guide 

 

6.13 ICS 
 
Configuration > Site Setup > Integration 

  
  

Inputs: 

• Integration Type: Please select “MQTT” 
• Username: User provided value to be used by the MQTT client application to establish a 

connection. This value must be unique, and we highly recommend a GUID value. (5-128 
alphanumeric characters) 

• Password: User provided value to be used by the MQTT client application to establish a 
connection. We highly recommend a GUID value. (8-128 ASCII characters) 

Once the integration is created, the connected application will be able to subscribe to the MQTT feed. 

Details on the various Topics and message payloads can be found in the MQTT YAML documentation. 

  



 

18 
 

 

Inovonics Cloud Integration Guide 

7 Feature Guide 
7.1 Advanced Location 

 
This section is intended to provide high level guidance for integrating your application with the Advanced 
Location features of the Inovonics Cloud Services Application. This guide assumes the reader is already 
familiar with ICS APIs and the structure and hierarchy of the application.  

Advanced Location supports multiple Roaming Device types, including: 

• Senior Living Pendants 
• Mobile Duress Devices 
• Asset Tags & Staff Badges 

Advanced Location supports these features for the various Roaming Devices: 

• Find Roaming Device 
• Geofencing 

Key Concepts 

• All location APIs will return the last available location for a Roaming Device. It is possible that this 
location could become stale if a pendant is not in range of a locator. If you consistently get stale or 
outdated locations, please ensure that your pendant’s batteries are regularly changed, and that your 
locator network is expansive enough to keep pendants in range.  

• It is possible for every location API to return two locations for one pendant. This is considered a 
“contested location” and occurs when two Inovonics locators both reported a similar signal strength. If 
this occurs, you will receive two locations in the payload, per the example below. 

• Currently the location APIs will only search the last 24 hours of location history. If a pendant has not 
been in range of a locator for 24 hours, a location API call will not return a location for this pendant.  

• Currently supports these pendant models that utilize BLE technology (Bluetooth Low Energy):  
o EN2221S-60 
o EN2222S-60 

 

7.1.1 Find Roaming Device  
 
Retrieve a Roaming Device’s last known location. 

7.1.1.1 Request (GET) 
 

/v1/sites/{site_id}/transmitter/{transmitter_id}/location/ 

7.1.1.2 Request Parameters 
 

• {site_id}: ID of the site (required) 
• {transmitter_id}: ID of the specific Roaming Device (required) 

  



 

19 
 

 

Inovonics Cloud Integration Guide 

7.1.1.3 Response (Single Location) 
 

{ 
"location": { 

        "locator_id": "43072f72-9ac6-ffff-a7c7-202ae2e341f1", 
        "locator_name": "Room #104", 
        "locator_txid": 2614999, 
        "rssi": -29, 
        "timestamp": "Tue, 05 Sep 2023 15:15:24 GMT" 
    }, 
    "model": "EN2222S60", 
    "name": "Jonathan F’s Pendant, 
    "transmitter_id": "e859fc72-ffff-45c2-b8f6-0220a8b6779f", 
    "txid": 5589018 
} 

 
This shows the timestamp and locator info of the last time that the Roaming Device checked in with the ICS 
application. It also includes the Roaming Device’s info itself.  

7.1.1.4 Response (Contested Location) 
 

{ 
"locations": [ 

{ 
"contested_location": true, 
    "locations": [ 

           { 
               "locator_id": "9d00941d-8744-4b10-ffff-44a546e3ca20", 
               "locator_name": "Outside Corridor", 
               "locator_txid": 25773211, 
               "rssi": -43, 
               "timestamp": "Tue, 05 Sep 2023 16:24:18 GMT" 
           }, 
           { 
               "locator_id": "9f905023-ffff-45fe-8eee-7d93b81fb7fd", 
               "locator_name": "West Cafeteria", 
               "locator_txid": 2573654, 
               "rssi": -46, 
               "timestamp": "Tue, 05 Sep 2023 16:24:18 GMT" 
           }] 

}], 
   "model": "EN2221S60", 
   "name": Arnold C., 

"transmitter_id": "e7df02b2-ffff-40f8-9564-1ed352ce40a3", 
"txid": 14026174 

} 

 
Please Note 

• A boolean variable called “contested_location” to denote the contested location. 
• The locations are represented in an array containing two location objects. 
• The Roaming Device information is the same JSON object. 

  



 

20 
 

 

Inovonics Cloud Integration Guide 

 

7.1.2 Find Roaming Device with Multiple Locations 
 
Retrieve multiple locations for a single Roaming Device. 

7.1.2.1 Request (GET) 
 

/v1/sites/{site_id}/transmitter/{transmitter_id}/location/history/ 
?checkins=2 
?{start_date}= 2022-01-01T12:00:00.000000-07:00 
?{end_date}= 2022-01-01T15:00:00.000000-07:00? 

7.1.2.2 Request Parameters 
 

• {site_id}: ID of the site (required) 
• {transmitter_id}: ID of the specific Roaming Device (required) 
• {checkins}: The number of previous locations to fetch (required, between 1-120) 
• {start_date}: The start date & time for locations to fetch (optional, ISO8601 datetime format) 
• {end_date}: The end date & time for locations to fetch (optional, ISO8601 datetime format) 

7.1.2.3 Response (Multiple Locations) 
 

{ 
    "locations": [ 
        { 
            "locator_id": "a9585947-f94f-bbbb-abad-813dc79bb295", 
            "locator_name": "Newsom Courtyard", 
            "locator_txid": 3239845, 
            "rssi": -57, 
            "timestamp": "Tue, 05 Sep 2023 17:08:10 GMT" 
        }, 
        { 
            "locator_id": "49aaaa41-726d-4e77-baf7-81a8d946c2c6", 
            "locator_name": "Game Room", 
            "locator_txid": 3243591, 
            "rssi": -36, 
            "timestamp": "Tue, 05 Sep 2023 17:07:24 GMT" 
        } 
    ], 
    "model": "EN2222S60", 
    "name": "Patient Zero", 
    "transmitter_id": "e859fc72-8c8e-9999-b8f6-0220a8b6779f", 
    "txid": 553461 
} 

 
Please Note 

• The same as the contested location response without the “contested_location” boolean variable. 
• The locations are represented in an array of location objects. 
• The Roaming Device information is the same JSON object. 

  

https://www.w3.org/TR/NOTE-datetime
https://www.w3.org/TR/NOTE-datetime


 

21 
 

 

Inovonics Cloud Integration Guide 

 

7.1.3 Find All Roaming Device’s Location 
 
Retrieves the last known location for all Roaming Devices for the given site. 

7.1.3.1 Request (GET) 
 

/v1/sites/{site_id}/transmitters/location 

7.1.3.2 Request Parameters 
 

• {site_id}: ID of the site (required) 

7.1.3.3 Response 
 

[ 
    { 
        "location": { 
            "contested_location": true, 
            "locations": [ 
                { 
                    "locator_id": "ac8674a6-abcd-40ab-96ba-d31f331bec4e", 
                    "locator_name": "Wellness Room", 
                    "locator_txid": 2579635, 
                    "rssi": -55, 
                    "timestamp": "Tue, 05 Sep 2023 21:02:53 GMT" 
                }, 
                { 
                    "locator_id": "1111115-dee1-4935-88d3-69bccf907f51", 
                    "locator_name": "Purgatory", 
                    "locator_txid": 5570777, 
                    "rssi": -56, 
                    "timestamp": "Tue, 05 Sep 2023 21:02:53 GMT" 
                } 
            ] 
        }, 
        "model": "EN2222S60", 
        "name": "Dulles", 
        "transmitter_id": "19265c6-20e1-483e-8ee6-ae2a72be7f34", 
        "txid": 324456 
    }, 
    { 
        "location": { 
            "locator_id": "6beb4444-f8dd-445b-9ee2-1212178114a7", 
            "locator_name": "Garage", 
            "locator_txid": 3246387, 
            "rssi": -51, 
            "timestamp": "Tue, 05 Sep 2023 21:03:22 GMT" 
        }, 
        "model": "EN2221S60", 
        "name": "Willards", 
        "transmitter_id": "3abcf2-ce42-47ae-b781-1ef87fd4f489", 
        "txid": 5496262 
    } 

Please Note 
• The response will contain an array of Roaming Device and location objects. 



 

22 
 

 

Inovonics Cloud Integration Guide 

• The response may contain a contested location response for a Roaming Device’s location. 
 

7.1.4 Find All Roaming Devices and Multiple Locations 
 
Retrieves multiple locations for all Roaming Devices for a given site. 

7.1.4.1 Request (GET) 
 

/v1/sites/{site_id}/transmitter/location/history/?checkins=2 
?{start_date}= 2022-01-01T12:00:00.000000-07:00 
?{end_date}= 2022-01-01T15:00:00.000000-07:00? 
 

7.1.4.2 Request Parameters 
 

• {site_id}: ID of the site (required) 
• {checkins}: The number of previous locations to fetch (required, between 1-120) 
• {start_date}: The start date & time for locations to fetch (optional, ISO8601 datetime format) 
• {end_date}: The end date & time for locations to fetch (optional, ISO8601 datetime format) 

  

https://www.w3.org/TR/NOTE-datetime
https://www.w3.org/TR/NOTE-datetime


 

23 
 

 

Inovonics Cloud Integration Guide 

7.1.4.3 Response 
 

[ 
    { 
        "locations": [ 
            { 
                "locator_id": "7a9809c1-0fb0-4e89-a367-74ae32c78a8a", 
                "locator_name": "Lab", 
                "locator_txid": 2614083, 
                "rssi": -59, 
                "timestamp": "Tue, 05 Sep 2023 21:14:57 GMT" 
            }, 
            { 
                "locator_id": "7a9809c1-0fb0-4e89-a367-74ae32c78a8a", 
                "locator_name": "Yoga Room", 
                "locator_txid": 2614980, 
                "rssi": -60, 
                "timestamp": "Tue, 05 Sep 2023 21:14:28 GMT" 
            } 
        ], 
        "model": "EN2221S60", 
        "name": "Gallup E.", 
        "transmitter_id": "76debe95-8e3a-4a08-9966-29cd172214bf", 
        "txid": 10866411 
    }, 
    { 
        "locations": [ 
            { 
                "locator_id": "2e4323b-3787-4533-9b40-9cc2e3bbb2ea", 
                "locator_name": "PT Room", 
                "locator_txid": 2576987, 
                "rssi": -52, 
                "timestamp": "Tue, 05 Sep 2023 21:14:55 GMT" 
            }, 
            { 
                "contested_location": true, 
                "locations": [ 
                    { 
                        "locator_id": "2e765413b-3787-4533-9b40-9cc2e3bbb2ea", 
                        "locator_name": "PT Room", 
                        "locator_txid": 2576821, 
                        "rssi": -53, 
                        "timestamp": "Tue, 05 Sep 2023 21:14:04 GMT" 
                    }, 
                    { 
                        "locator_id": "37d3d7fa-1234-4b8f-9edb-f2ca8767ae88", 
                        "locator_name": "Phone Room", 
                        "locator_txid": 1980334, 
                        "rssi": -56, 
                        "timestamp": "Tue, 05 Sep 2023 21:14:04 GMT" 
                    } 
                ] 
            } 
        ], 
        "model": "EN2221S60", 
        "name": "Alistair P", 
        "transmitter_id": "81e7f433-6a85-4d29-6543-f8258ebd10ec", 
        "txid": 1375606} 

 



 

24 
 

 

Inovonics Cloud Integration Guide 

Please Note 
• The response will contain an array of Roaming Device and location objects. 
• The response may contain a contested location response for a Roaming Device’s location. 

 

7.1.5 Geofencing 
 

Geofencing is a means of restricting access to specific areas within a Site.  Geofencing settings can be 
managed in the ICS UI through the Advanced Location 

Key Concepts 

• Geofencing restrictions are built around the concept of a Unit’s Schedule. 
• Schedules denote the days and times when a Unit is ‘Open’. 
• Schedules can support multiple ‘Open’ time slots on a single day. 
• Schedules can have no ‘Open’ days and times to denote the Unit is always Restricted. 
• Schedules can apply to all Roaming Device or to specific devices. 
• When a Roaming Device is detected in a restricted Unit, a ‘Breach’ event is triggered. 

 

7.1.5.1 Create / Update a Schedule 
 
These schedules apply to the entire unit. A unit can only have one schedule. Any Roaming Device that 
accesses outside of permitted hours will generate a breach. If no time slot is specified, the schedule will 
be set as "never_open": true, which means that it is is blocked at any time of any day. 

7.1.5.1.1 Request (POST / PUT) 
 

/v1/sites/{site_id}/units/{unit_id}/schedule/ 
 

7.1.5.1.2 Request parameters 
 

{site_id}: ID of the site (required) 
      {unit_id}: ID of the unit (required) 
 

7.1.5.1.3 Request body 
 

{name}: string indicating the name of the schedule 
{note}: string with a note related to the schedule 
{sunday}: list of timeslots {"start_time": "HH:mm", "end_time": "HH:mm"}  
{monday}: list of Timeslots 
{monday}: list of Timeslots  
{wednesday}: list of Timeslots 
{monday}: list of Timeslots 
{friday}: list of Timeslots 
{monday}: list of Timeslots 
 
Timeslot model: {"start_time": "HH:mm", "end_time": "HH:mm"} 
 



 

25 
 

 

Inovonics Cloud Integration Guide 

7.1.5.1.4 Response 
 

{ 
"schedule_id": "4012edd6-e0f8-419b-990b-86f3b06a06c2", 
"name": "Schedule for Office 1", 

      "note": "Open in active hours from mon to thu", 
      "never_open": false, 
      "sunday": [], 
      "monday": [ 
      { 
       "end_time": "18:00", 
            "start_time": "09:00" 

}], 
      "tuesday": [ 
      { 
       "end_time": "18:00", 
       "start_time": "09:00" 

}], 
… entry for each day of the week and it’s open time slots 

7.1.5.2 Retrieve a Schedule 
 

7.1.5.2.1 Request (GET) 
 
/v1/sites/{site_id}/units/{unit_id}/schedule/ 
 

7.1.5.2.2 Request parameters 
 

{site_id}: ID of the site (required) 
{unit_id}: ID of the unit (required) 
 

7.1.5.2.3 Response 
 

{ 
"schedule_id": "4012edd6-e0f8-419b-990b-86f3b06a06c2", 

   "name": "Schedule for Office 1", 
   "note": "Open in active hours from mon to thu", 
   "never_open": false, 
   "sunday": [], 
   "monday": [ 
   { 
    "end_time": "18:00", 
         "start_time": "09:00" 
   }], 
   "tuesday": [ 
   { 
    "end_time": "18:00", 
         "start_time": "09:00" 
   }], 

… entry for each day of the week and it’s open time slots 

  



 

26 
 

 

Inovonics Cloud Integration Guide 

 

7.1.6 Roaming Device Schedules 
 

These schedules apply to a specific Roaming Device. A Roaming Device can only have one schedule per 
Unit. If the Roaming Device is detected in the restricted unit outside of ‘open’ hours then a breach event will 
be generated. If no ‘open’ time slot is specified, the schedule will be set as "never_open": true, meaning 
this Roaming Device is always restricted from this Unit. 

7.1.6.1 Create / Update a Unit + Roaming Device Schedule 
 

7.1.6.1.1 Request (POST / PUT) 
 

/v1/sites/{site_id}/units/{unit_id}/transmitters/{transmitter_id}/schedule/ 
 

7.1.6.1.2 Request parameters 
 

{site_id}: ID of the site (required) 
{unit_id}: ID of the unit (required) 
{transmitter_id}: ID of the Roaming Device (required) 

 

7.1.6.1.3 Request body 
 

{name}: string indicating the name of the schedule 
{note}: string with a note related to the schedule 
{sunday}: list of timeslots {"start_time": "HH:mm", "end_time": "HH:mm"}  
{monday}: list of Timeslots 
{monday}: list of Timeslots  
{wednesday}: list of Timeslots 
{monday}: list of Timeslots 
{friday}: list of Timeslots 
{monday}: list of Timeslots 
 
Timeslot model: {"start_time": "HH:mm", "end_time": "HH:mm"} 

 

7.1.6.1.4 Response 
 

{ 
"schedule_id": "4012edd6-e0f8-419b-990b-86f3b06a06c2", 

   "name": "Schedule for Office 1", 
   "note": "Open in active hours from mon to thu", 
   "never_open": false, 
   "sunday": [], 
   "monday": [ 
   { 
    "end_time": "18:00", 
         "start_time": "09:00" 
   }], 
   "tuesday": [ 
   { 
    "end_time": "18:00", 
         "start_time": "09:00" 
   }], 

… entry for each day of the week and it’s open time slots 



 

27 
 

 

Inovonics Cloud Integration Guide 

 

7.1.6.2 Retrieve a Unit + Roaming Device Schedule 
 

7.1.6.2.1 Request (GET) 
 

/v1/sites/{site_id}/units/{unit_id}/transmitters/{transmitter_id}/schedule/ 

 

7.1.6.2.2 Request parameters 
 

{site_id}: ID of the site (required) 
{unit_id}: ID of the unit (required) 
{transmitter_id}: ID of the Roaming Device (required) 
 

7.1.6.2.3 Response 
 

{ 
"schedule_id": "4012edd6-e0f8-419b-990b-86f3b06a06c2", 

   "name": "Schedule for Office 1", 
   "note": "Open in active hours from mon to thu", 
   "never_open": false, 
   "sunday": [], 
   "monday": [ 
   { 
    "end_time": "18:00", 
         "start_time": "09:00" 
   }], 
   "tuesday": [ 
   { 
    "end_time": "18:00", 
         "start_time": "09:00" 
   }], 

… entry for each day of the week and it’s open time slots 

 

7.1.6.3 Site Schedules 
 

Retrieve all Schedules associated with a given site.  

The response object is an array of Schedules as defined below. 

7.1.6.3.1 Request (GET) 
 

/v1/sites/{site_id}/schedules/ 
 

7.1.6.3.2 Request parameters 
 

{site_id}: ID of the site (required) 
 

  



 

28 
 

 

Inovonics Cloud Integration Guide 

7.1.6.3.3 Response 
 

[ 
   { 
   "building_id": "61bbbc80-5d76-4ea9-a148-d9cf6711d81f", 

"building_name": "San Serafin Hospital", 
"floor_id": "6e201637-328b-44b7-8dc3-92bc2bf63457", 
"floor_name": "Main Floor", 
"unit_id": "1cd2fd72-6098-4b25-8200-1e7078c9f74a", 
"unit_name": "Waiting Room", 
"pendant_id": "e6772f14-8d41-4ebd-8a71-2120708f0c76", 
"pendant_name": "asset tag ji", 
"pendant_txid": 9832146, 
"schedule_id": "f0c9d926-e29b-4360-b65d-6293a24bae5b", 
"name": "2", 
"never_open": false, 
"note": "", 
"sunday": [] …array of Timeslot objects, 
"monday": [] …array of Timeslot objects,  
"tuesday": [] …array of Timeslot objects,  
"wednesday": [] …array of Timeslot objects,  
"thursday": [] …array of Timeslot objects,  
"friday": [] …array of Timeslot objects,  
"saturday": [] …array of Timeslot objects,  

   }, 
   { … another Schedule object} 
] 

 

7.1.7 Breaches 
 
Breaches are triggered when a Roaming Device is detected in a unit outside of the ‘open’ hours defined 
in the Schedules. They are created automatically by ICS and cannot be created via the API. 

7.1.7.1 Breach Types 
 

Breach Types define the type of Geofence restriction that was broken. The four breach types are: 

1. "unit_breach": A Roaming Device is detected in a ‘never-open’ restricted unit. 
2. "unit_schedule_breach": A Roaming Device is detected outside of the unit’s ‘open’ schedule. 
3. "unit_transmitter_breach": The specific Roaming Device is detected in a ‘never-open’ 

restricted unit. 
4. "unit_transmitter_schedule_breach": The specific Roaming Device is detected outside of the 

unit’s ‘open’ schedule. 
7.1.7.2 Breach Statuses 

 
1. “Initial”: denotes the first time this Roaming Device was detected in this restricted Unit. 
2. “Ongoing”: denotes the Roaming Device is still detected in the restricted Unit. 
3. “Clear”: denotes the Roaming Device has been detected in a non-restricted Unit. 

  



 

29 
 

 

Inovonics Cloud Integration Guide 

 

7.1.7.3 Retrieve Breaches for a Roaming Device (Last 24 hours) 
 

7.1.7.3.1 Request (GET) 
 

/v1/sites/{site_id}/transmitters/{transmitter_id}/breaches/ 
 

7.1.7.3.2 Request parameters 
 

{site_id}: ID of the site (required) 
{transmitter_id}: ID of the pendant (required) 
 

7.1.7.3.3 Response 
 

{ 
"breach_id": "ac73e3c0-dc33-4423-0443-58adbda89dc4", 
"timestamp": "2024-03-11T17:00:05.062Z", 
"status": "Initial", 
"breach_types": "unit_breach", 
"last_modified_time": "2024-03-11T17:00:05.062Z", 
"clear_time": "2024-03-11T17:00:05.062Z", 
"unit_name": "Unit A", 
"clear_unit_name": "Unit A", 
"site_name": "Site A", 
"device_name": "Device A", 
"clear_unit_id": "d8a6ac32-a484-ed19-c3fb-231412ffd93f", 
"unit_id": "e9c51455-4b56-2701-4f3e-2a36ac92421c", 
"initial_locator_id": "9ad59d4b-84ec-1c30-843f-51d6eadf0900", 
"initial_rssi": -50 

} 

 

7.1.7.4 Retrieve a Breach 
 

Retrieve the details for a specific Breach event. 

7.1.7.4.1 Request (GET) 
 

/v1/sites/{site_id}/breaches/{breach_id}/ 
 

7.1.7.4.2 Request parameters 
 

{site_id}: ID of the site (required) 
{breach_id}: ID of the breach (required) 

 
  



 

30 
 

 

Inovonics Cloud Integration Guide 
 

7.1.7.4.3 Response 
 

{ 
"breach_id": "ac73e3c0-dc33-4423-0443-58adbda89dc4", 
"timestamp": "2024-03-11T17:00:05.062Z", 
"status": "Initial", 
"breach_types": "unit_breach", 
"last_modified_time": "2024-03-11T17:00:05.062Z", 
"clear_time": "2024-03-11T17:00:05.062Z", 
"unit_name": "Unit A", 
"clear_unit_name": "Unit A", 
"site_name": "Site A", 
"device_name": "Device A", 
"clear_unit_id": "d8a6ac32-a484-ed19-c3fb-231412ffd93f", 
"unit_id": "e9c51455-4b56-2701-4f3e-2a36ac92421c", 
"initial_locator_id": "9ad59d4b-84ec-1c30-843f-51d6eadf0900", 
"initial_rssi": -50 

} 

 

7.1.8 Breach Comments 
 
Breach events support adding Comments to them for recording any relevant details. 

 

7.1.8.1 Create a Breach Comment 
 

7.1.8.1.1 Request (POST) 
 

/v1/sites/{site_id}/breaches/{breach_id}/comments/ 
 

7.1.8.1.2 Request parameters 
 

{site_id}: ID of the site (required) 
{breach_id}: ID of the breach (required) 

 

7.1.8.1.3 Request body 
 

{ 
"comment": "sample comment" 

} 

 
 

  



 

31 
 

 

Inovonics Cloud Integration Guide 

 

7.1.8.1.4 Response 
 

[{ 
"username": "someone@example.com", 

   "timestamp": "2024-03-11T17:07:43.027Z", 
   "alarm_id": "72793372-ba2a-a295-6e22-b5f8fff6221c", 
   "comment_id": "61f7b5eb-c925-0fe6-cce8-e640e7de783b", 
   "comment": "sample comment" 
}] 

 

Please Note: the response is an array of Note objects. 
 

7.1.8.2 Retrieve Comments for a Breach 
 

7.1.8.2.1 Request (GET) 
 

/v1/sites/{site_id}/breaches/{breach_id}/comments/ 
 

7.1.8.2.2 Request parameters 
 

{site_id}: ID of the site (required) 
{breach_id}: ID of the breach (required) 
 

7.1.8.2.3 Response 
 

[ 
{ 

"username": "someone@example.com", 
"timestamp": "2024-03-11T17:07:43.027Z", 
"alarm_id": "72793372-ba2a-a295-6e22-b5f8fff6221c", 
"comment_id": "61f7b5eb-c925-0fe6-cce8-e640e7de783b", 
"comment": "Test comment" 

}, 
{…another comment object} 

] 

 

7.2 Fall Detection for Senior Living 
 
The Inovonics Fall Detection solution allows you to easily upgrade your trusted e-call system to include a 
critical alarm feature for high-risk events and data insights that can help you to improve resident outcomes.   

7.2.1 Overview 
 
Fall Detection utilizes multiple sensors on the pendant worn by senior living residents, coupled with the vast 
computing power of the cloud, to provide valuable information about resident falls.  Additionally, ICS provides 
reporting & analytics for fall data. 



 

32 
 

 

Inovonics Cloud Integration Guide 

7.2.2 Fall Detection Mode 
 
The Inovonics Fall Detection pendant supports 2 modes of operation:  

• “Fall Mode”: The pendant utilizes its advanced algorithms for fall detection and sends alarms through 
EchoStream that are classified as ‘Falls’. This is the default mode of the pendant. 
 

• “Activity Mode”: The pendant utilizes its advanced algorithms for fall detection and sends alarms through 
EchoStream that are classified as ‘Activity’. Please refer to our installation and operation manual for 
detailed instructions. 

7.2.3 Retrieve Fall Detection Mode (API) 
 
The current mode of Fall Detection pendants can be retrieved from the API for either an individual pendant, or 
for all pendants registered to a given site.  

7.2.3.1 Request (GET) 
 

/v1/sites/{site_id}/transmitters/{transmitter_id} 

7.2.3.2 Request Parameters 
 

• {site_id}: ID of the site (required) 
• {transmitter_id}: ID of a specific transmitter / pendant (optional) 

 

7.2.3.3 Response 
{ 

"alarm_category": "Life Safety", 
"bleid": 0, 
"device_profile": { 

"additional_fields": { 
      "mode": "activity" 
           }, 

 "model": "EN2222S60", 
 "name": "default_en2222s60_profile_activity_monitor_mode", 
 "note": "Default EN2222S60 Profile defined by system and cannot be modified", 
 "system_defined": true 

  }, 
 "device_profile_id": "1931e224-c9dd-4928-aa3f-b2005c03d8f7", 
 "device_type": "Pendant", 
 "favorite": true, 
 "first_cloud_checkin_date": "2024-03-19 18:28:18.838992", 
 "last_low_battery_end_time": "None", 
 "last_low_battery_start_time": "None", 
 "last_replacement_battery_end_time": "None", 
 "last_replacement_battery_start_time": "None", 
 "last_sync_date": "2024-03-21T16:21:55.638560-06:00", 
 "location": "Example pendant", 
 "model": "EN2222S60", 
 "note": "", 
 "test_device": false, 
 "transmitter_id": "3e4654e0-2fe5-49e7-aff0-93432fce28b6", 
 "txid": 3246682 
} 
 



 

33 
 

 

Inovonics Cloud Integration Guide 

The supported “mode” values are: 

• “alarm”: Fall Detection is ON (default) 
• “activity”: Fall Detection is OFF 

7.2.4 Retrieve Fall Detection Mode (MQTT) 
 

Fall Detection Mode changes can also be detected in real-time via the MQTT feed. 

7.2.4.1 Topic 
 

 <username>/site/<site_id>/devices 
 

7.2.4.2 Example (Disabled) 
 

{ 
  "organization_name": "Senior Living System Test Sites", 
  "site_name": "Example Site", 
  "building_name": null, 
  "device_location": "Example pendant", 
  "device_note": "", 
  "device_txid": 3233220, 
  "device_type": "TRANSMITTER", 
  "device_model": "EN2222S60", 
  "last_sync_time": "2024-03-21T22:49:39.583401", 
  "send_time": "2024-03-21T22:49:42.053589", 
  "status": "FALL_MODE_DISABLED", 
  "rfmessage_id": "2d474e0c-1c7c-4989-9e1e-a10ea2e83aab", 
  "is_historical": false, 
  "rfmessage_time": "2024-03-21T22:49:39.583401" 
} 

 
7.2.4.3 Example (Enabled) 
 

{ 
  "organization_name": "Senior Living System Test Sites", 
  "site_name": "Example Site", 
  "building_name": null, 
  "device_location": "Example pendant", 
  "device_note": "", 
  "device_txid": 3233220, 
  "device_type": "TRANSMITTER", 
  "device_model": "EN2222S60", 
  "last_sync_time": "2024-03-21T22:49:39.583401", 
  "send_time": "2024-03-21T22:49:42.053589", 
  "status": "FALL_MODE_DISABLED", 
  "rfmessage_id": "2d474e0c-1c7c-4989-9e1e-a10ea2e83aab", 
  "is_historical": false, 
  "rfmessage_time": "2024-03-21T22:49:39.583401" 
} 

 



 

34 
 

 

Inovonics Cloud Integration Guide 

8 Embedded Widgets 
 

8.1 Overview 
 

To facilitate ease of feature integration, Inovonics Cloud Services now supports Embedded Widgets. These 
widgets encapsulate both user interface & feature logic that can be included within partner applications. 

Key Concepts 

• Embedded Widgets are delivered via specialized URLs from Inovonics Cloud Services and should be 
implemented inside of an <iframe> object in your application. 

• User access to any Embedded Widget within your application should be determined by your 
application’s user role & permissions system. 
 

8.2 Available Widgets 
 

The Inovonics Cloud Service API currently supports these widgets: 

8.2.1 Find Roaming Device 
 

Find Roaming Device is part of the Advanced Location solution. It supports: 

• Roaming Device Search  
• Floor map location  
• Date & time of last pendant check-in 
• Roaming Device Search History 
• “Starred” Roaming Device for quick access 

All of this functionality is encapsulated in this single powerful widget. 
 

8.2.2 Operational Insights Dashboards 
 

Operational Insights Dashboards offer powerful reporting tools for your customers. 

There are 4 distinct dashboards available: 

• Alarms Dashboard  
• Battery Dashboard 
• Fall Alarms Dashboard (Available for Senior Living customers only) 
• Fall History Dashboard (Available for Senior Living customers only) 

 
 

  



 

35 
 

 

Inovonics Cloud Integration Guide 

 

8.3 Authorization 
 

Embedded Widgets supports the bearer authentication scheme. The flow follows this sequence: 

1. Request an {access_token} bearer token. 
2. Utilize that {access_token} to retrieve a widget’s URL. 

8.3.1 Request 
 
Retrieve an {access_token} that will be able to retrieve a widget’s URL. 
https://security-api.inovonics.com/oauth/token/ 

 

Request Header 
Content-Type application/x-www-form-urlencoded  

 

8.3.2 Request Parameters 
 
• {grant_type}: The string “password” is the only accepted value (required) 
• {client_id}: client identifier (required) 
• {username}: the username, typically an email address (required)  
• {password}: the username’s password (required)  
• {client_secret}: client secret (required) 

 
8.3.3 Response 

 
{   
   access_token: "sDaPb7KmgpVNDdmFuviB2i4RzllL3EwxQL047MrSJC",  
    expires_in: 86400,  
    refresh_token: "98h3sBoj03abGMYKDsWefCd3eMDac51IchWDp9NBZcT4rVhU",  
    scope: "webapp",  
    token_type: "Bearer",  
    user_id: "5bg935b6-k5l2-94os-b204-923peof2nl40",  
    username: "example@example.com",  
}  

 

8.3.4 Response Fields 
 

The response will contain these fields which will be utilized when requesting a widget:  

• {access_token} (string): A bearer token that grants secure access API resources. 
• {expires_in} (number): The lifespan of the bearer token in milliseconds. 
• {refresh_token} (string): Token that enables reauthorization without requiring a new login. 
• {scope} (string): The context which the token may access. 
• {token_type} (string): The type of token. Supports “bearer”. 
• {user_id} (string): The unique UUID of the requesting user. 
• {username} (string): the username, typically an email address. 



 

36 
 

 

Inovonics Cloud Integration Guide 

8.4 Requesting a Widget 
 

 Using the Auth {access_token}, a subsequent API can call be made to fetch the widget’s URL 

8.4.1 Request Structure 
 

 All Widget requests follow this structure: 
 /v1/sites/{site_id}/{widget}/?scope={scope}&org_id={organization_id} 

 

8.4.2 Request Parameters & Headers 
 

o {site_id}: ID of the site (required) 
o {organization_id}: ID of the organization (required) 
o {scope}: context that the bearer token may access (required) 
o {widget}: the widget being requested (required) 

 

 
Embedded Widget requests requires an authorization header that includes the bearer token 

 

 
'Authorization': 'Bearer ' + {access_token} 

 

8.4.2.1 Scope 
 

The {scope} identifies the context that the bearer token may access. 

Available scopes: 

• “location_find” grants access to the Find Roaming Device widget. 
• “site_dashboard” grants access to the various Operational Insights Dashboards. 

8.4.2.2 Widget 
 

The {widget} identifies the specific widget that is being requested. 

Available Features: 

• “embedded-find-them-url”: Find Roaming Device widget’s. 
• “embedded-alarms-dashboard-url”: Operational Insights – Alarms Dashboard. 
• “embedded-battery-dashboard-url”: Operational Insights – Battery Dashboard. 
• “embedded-fall-alarms-dashboard-url”: Operational Insights – Fall Alarms Dashboard. 
• “embedded-fall-alarms-history-dashboard-url”: Operational Insights – Fall Alarms History 

Dashboard. 

  



 

37 
 

 

Inovonics Cloud Integration Guide 

8.4.2.3 Scope & Widget compatibility table 
 

Scope Widget 
location_find embedded-find-them-url 

site_dashboard embedded-alarms-dashboard-url 

site_dashboard embedded-battery-dashboard-url 

site_dashboard embedded-fall-alarms-dashboard-url 

site_dashboard embedded-fall-alarms-history-dashboard-url 

 

8.4.3 Request Examples 
 

The Scope parameter is highlighted in green; the Widget in teal. 

Find Roaming Device 

/v1/sites/123asd456/embedded-find-them-url/?scope=location_find&org_id=890qwe678 

Operational Insights: Alarms Dashboard 

/v1/sites/123asd456/embedded-alarms-dashboard-url/?scope=site_dashboard 
&org_id=890qwe678 

Operational Insights: Battery Dashboard 

/v1/sites/123asd456/embedded-battery-dashboard-url/?scope=site_dashboard 
&org_id=890qwe678 

 
 
 

  



 

38 
 

 

Inovonics Cloud Integration Guide 

8.4.4 Response Example 
 

 The successful response will contain the URL for the requested widget.  Here is an example of a the 
 “Find Roaming Device” widget response. 

{  
   "url": "https://security.inovonics.com/security/282w8w8e92/sites/29e9e9-8e8fe9/find-
them" 
} 

8.5 Embedding the Widget 
8.5.1 IFrame Settings & Styles 

 
As stated earlier, widgets are intended to be embedded within an iframe control. 
 

To ensure proper behavior, Inovonics suggests the iframe control have these settings & values set: 

Setting Value Description 
allowRedirectInIframe True Required for the proper 

function of the widget 
sandbox “allow-same-origin allow-scripts” Enables proper 

restrictions for embedded 
content 

src Response URL This is The URL returned 
from the widget request 

frameborder “0” (zero) To display seamlessly 
within the embedding app. 

 

Example 

<iframe 
    allowRedirectInIframe="true" 
    sandbox="allow-same-origin allow-scripts" 
    src=<response URL> 
    frameborder="0" 
></iframe> 

 
Inovonics recommends explicitly setting the iframe style to ensure the optimal user experience.  Each 
implementation may vary, and these are just general guidelines. 
 

element { 
  position: relative; 
  height: 100%; 
  width: 100%; 
} 

 

With these settings, the iframe would utilize the entire container’s area, and should not affect the position 
of other UI elements. 

 
 

Read More information about iframe settings. 

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/iframe


 

39 
 

 

Inovonics Cloud Integration Guide 

9 Appendix 
 

Below you will find other helpful resources for your integrations. 
 

9.1 Connectivity Loss 
 
There are several different scenarios for loss of connectivity, and Inovonics Cloud Services has monitoring 
and notifications in the event of connectivity loss.  Below describe various outage scenarios and how the 
system will behave. 

 

Element Frequency What Will Happen Partner Action Scope Restoral 

Google Cloud 
Platform 

30 seconds  
(heartbeat) 

MQTT "Loss of connection" 
message is sent 

Subscribe to MQTT topic (see 
YAML docs) 

Global All available queued notifications 
are delivered. 

Inovonics Cloud 
Services (ICS) 

30 seconds  
(heartbeat) 

Online messages will cease Recommend monitoring for 2 
concurrent missed heartbeats. 

Global All available queued notifications 
are delivered. 

MQTT Broker 30 seconds  
(heartbeat) 

Online messages will cease Recommend monitoring for 2 
concurrent missed heartbeats. 

Global All available queued notifications 
are delivered. 

Gateway - Loss of 
Power 

7.5 - 12.5 
minutes 

MQTT “Inactive" message is 
sent 

Subscribe to MQTT topic (see 
YAML docs) 
** Recommend a backup power 
source 

Local New alarms will be delivered, 
however alarms that occurred 
during loss of power cannot be 
recovered. 

Gateway - 
Connection to ICS 
lost 

7.5 - 12.5 
minutes 

MQTT "Inactive" message is 
sent 

Subscribe to MQTT topic (see 
YAML docs) 

Local All devices that alarmed during the 
outage will send alarms when the 
connection is restored 

Gateway - Network 
connection lost 

7.5 - 12.5 
minutes 

MQTT "Inactive" message is 
sent 

Subscribe to MQTT topic (see 
YAML docs) 
** Recommend a backup internet / 
cellular connection 

Local All devices that alarmed during the 
outage will send alarms when the 
connection is restored 

 

  



 

40 
 

 

Inovonics Cloud Integration Guide 

 

9.1.1 Message Examples 
9.1.1.1 Loss of Connection 

 
{ 
  "timestamp": "2022-10-05T23:52:49.376358", 
  "status": "OFFLINE", 
  "type": "Cloud Services Status", 
  "description": "The following critical cloud services are down: <SERVICE 1> | 
<SERVICE 2> | ... " 
} 

9.1.1.2 Inactive 
 

{ 
    "organization_name": “Organization Name",  
    "site_name": “Site Name",  
    "building_name": “Building Name",  
    "device_location": “Device Location",  
    "device_txid": 123456,  
    "device_type": "GATEWAY",  
    "device_model": "EN7380",  
    "last_sync_time": "2023-07-18T12:42:46.593641",  
    "send_time": "2023-07-18T12:53:45.783197",  
    "status": "INACTIVE",  
    "rfmessage_id": "“ 
} 

  



 

41 
 

 

Inovonics Cloud Integration Guide 

9.2 Postman 
 

 Postman is a tool that can be used to rapidly consume API services and prototype integration. 

  
Open Postman > go to “Environment” tab > click on “+” (Create new Environment). 

 

1. Name the New Environment (ex: Inovonics Test Env). 
2. Add the following variables. 
3. Assign their initial values. 
4. Save your changes. 

Variable Initial Value 

BASE_URL https://test-security-api.inovonics.com 

AUTH_URL https://test-security-api.inovonics.com/oauth/token/ 

username your username 

user_password your password 

CLIENT_ID Your client id 

CLIENT_SECRET Your client secret 

 

https://test-security-api.inovonics.com/
https://test-security-api.inovonics.com/oauth/token/


 

42 
 

 

Inovonics Cloud Integration Guide 

 

 

Be sure to click on Reset All if the values are not reflected in the Current Value column. 

 

On the top right corner of the Postman, click on the dropdown section and select this new environment 
that was created. 

 

  



 

43 
 

 

Inovonics Cloud Integration Guide 

 

Click on “Collections” tab > go to your collection’s root folder >Click on Authorization Tab 

Scroll to the “Configure New Token” section and enter the following details: 

Field Value 

Token Name any name 

Grant Type Password Credentials 

Access Token URL {{AUTH_URL}} 

Client ID {{CLIENT_ID}} 

Client Secret {{CLIENT_SECRET}} 

Username {{username}} 

Password {{user_password}} 

Client Authentication Send client credentials in body 

 

Click on “Get New Access Token” this will generate a new token > once successful > proceed and click 
"Use Token”. 

Now the access token is applied to the collection and API requests can be made. 

 In the individual API request tabs > under Authorization sub-tab > make sure the Type is “Inherit auth 
 from parent”. 

 



 

44 
 

 

Inovonics Cloud Integration Guide 

9.3 Inovonics Hardware Part Numbers 
 

 
Hardware Component 

 
 
Part Numbers 

Application 
Security Senior Living TapWatch 

Gateway EN7295 
EN7380 
EN7580 

§  
§ 

 
 

§ 
Repeater EN5040 

EN5040-T 
EN5040-20T 

§ 
§ 

§ 
§ 
§ 

§ 
§ 

Locator EN5060 § §  
BLE-Enabled Pendants EN2221S-60 

EN2222S-60 
EN2224 
EN2233D 
EN2233S 
EN2235D 
EN2235S 
EN2236D 
EN2238D 

 
 

§ 
§ 
§ 
§ 
§ 
§ 
§ 

§ 
§ 

 

BLE Asset Tags ADVL-1280 § §  
BLE Staff Badges ADVL-1290 

ADVL-2291 
§ 
§ 

§ 
§ 

 

 

  



 

45 
 

 

Inovonics Cloud Integration Guide 

9.4 MQTT YAML file content 
 

The following YAML content may be rendered in your preferred YAML viewer, such as 
https://studio.asyncapi.com/. 

 

asyncapi: 2.5.0 
info: 
  title: Mobile Duress MQTT Location Integration 
  version: 1.18.0.0 
  description: >- 
    Receive location messages for alarms taking place on sites via the Inovonics 
    Cloud. 
servers: 
  production: 
    url: mqtt.inovonics.com 
    protocol: mqtt 
    description: Production broker 
    variables: 
      port: 
        description: Secure connection (TLS) is available through port 8883. 
        default: '1883' 
        enum: 
          - '1883' 
          - '8883' 
  test: 
    url: test-mqtt.inovonics.com 
    protocol: mqtt 
    description: Test broker 
    variables: 
      port: 
        description: >- 
          Secure connection (TLS) is unavailable on this URL, see 
          test-alternative. 
        default: '15856' 
        enum: 
          - '15856' 
  test-alternative: 
    url: m9cdfcd9.us-east-1.emqx.cloud 
    protocol: mqtt 
    description: Test broker 
    variables: 
      port: 
        description: >- 
          This broker is the same broker as test-mqtt.inovonics.com, just uses 
          the broker base username.  Secure connection (TLS) is available 
          through port 15811. 
        default: '15856' 
        enum: 
          - '15856' 
          - '15811' 
defaultContentType: application/json 
channels: 
  '{username}/site/{site_id}/location': 
    description: >- 
      The topic on which location messages for a specific site are reported. It 
      is highly recommended to subscribe to this topic using a QOS of 1 or 2, 
      and using a persistent session (setting the clean session flag to false). 
    parameters: 

https://studio.asyncapi.com/


 

46 
 

 

Inovonics Cloud Integration Guide 
      site_id: 
        $ref: '#/components/parameters/site_id' 
      username: 
        $ref: '#/components/parameters/username' 
    subscribe: 
      summary: Event describing a location for an alarm event on a site. 
      message: 
        $ref: '#/components/messages/location' 
  '{username}/site/{site_id}/devices': 
    description: >- 
      The topic on which problematic device status messages (such as inactivity) 
      for a specific site are reported. It is highly recommended to subscribe to 
      this topic using a QOS of 1 or 2, and using a persistent session (setting 
      the clean session flag to false). 
    parameters: 
      site_id: 
        $ref: '#/components/parameters/site_id' 
      username: 
        $ref: '#/components/parameters/username' 
    subscribe: 
      summary: Event describing device problems on the site. 
      message: 
        $ref: '#/components/messages/device_status' 
  status: 
    description: The topic on which the health of the Inovonics Cloud can be monitored. 
    subscribe: 
      summary: Event indicating a health/status change of the Inovonics Cloud. 
      message: 
        $ref: '#/components/messages/system_health' 
components: 
  messages: 
    system_health: 
      summary: >- 
        The current state of the Inovonics Cloud system health.  The system 
        health will be sent once every 30 seconds to indicate whether all 
        critical cloud services are functioning correctly.  This status does not 
        take IP Gateway health into account, use the device_status topic to 
        monitor gateways instead. 
      payload: 
        type: object 
        properties: 
          timestamp: 
            description: An ISO8601 string in UTC at which the status change occurred. 
            type: string 
          type: 
            description: >- 
              This should always be 'Cloud Services Status' to indicate what 
              this status is for (not for gateways). 
            type: string 
          status: 
            description: Current state of the Inovonics Cloud system 
            type: string 
            enum: 
              - ONLINE 
              - OFFLINE 
          description: 
            description: A description of which specific cloud services are offline. 
            type: string 
    location: 
      summary: >- 
        Location message with the location information for an alarming pendant 
        on a site 



 

47 
 

 

Inovonics Cloud Integration Guide 
      payload: 
        type: object 
        properties: 
          status: 
            description: >- 
              The status of determining the location.  For each alarm, two 
              messages will be published.  One indicating the alarm was received 
              by the Inovonics cloud and the location is being calculated, and a 
              second message once the location is determined or the cloud is 
              unable to determine the location 
            type: string 
            enum: 
              - CALCULATING 
              - LOCATION_DETERMINED 
              - LOCATION_CONTESTED 
              - LOCATION_UNKNOWN 
          send_time: 
            description: >- 
              An ISO8601 string in UTC at which location information was 
              published. 
            type: string 
          pendant_txid: 
            description: >- 
              TXID (transmitter ID) of the pendant that sent an alarm on the 
              site. 
            type: integer 
          pendant_name: 
            description: >- 
              The name of the pendant configured in the Inovonics Mobile Duress 
              application. 
            type: string 
          organization_name: 
            description: The name of the organization to which the site belongs. 
            type: string 
          site_name: 
            description: The name of the site to which the alarming pendant belongs. 
            type: string 
          strongest_building_name: 
            description: >- 
              The name of the building containing the locator with the strongest 
              alarm signal strength. 
            type: string 
          strongest_location: 
            description: >- 
              The name of the location given to the locator with the strongest 
              alarm signal strength. 
            type: string 
          strongest_rssi: 
            description: >- 
              The signal strength of which the strongest locator heard the alarm 
              from the pendant. 
            type: integer 
          strongest_locator_txid: 
            description: >- 
              TXID (transmitter ID) of the strongest locator that heard the 
              alarm from the pendant. 
            type: integer 
          alternate_building_name: 
            description: >- 
              The name of the building containing the locator with the second 
              strongest alarm signal strength.  This field will only be filled 
              in when a second location has similar signal strength to the 



 

48 
 

 

Inovonics Cloud Integration Guide 
              strongest location. 
            type: string 
          alternate_location: 
            description: >- 
              The name of the location given to the locator with the second 
              strongest alarm signal strength.   This field will only be filled 
              in when a second location has similar signal strength to the 
              strongest location. 
            type: string 
          alternate_rssi: 
            description: >- 
              The signal strength of which the second strongest locator heard 
              the alarm from the pendant. 
            type: integer 
          alternate_locator_txid: 
            description: >- 
              TXID (transmitter ID) of the second strongest locator that heard 
              the alarm from the pendant. 
            type: integer 
          strongest_locator_floor_name: 
            description: >- 
              The name of the floor of the locator with the strongest 
              alarm signal strength (if it exists). 
            type: string 
          strongest_locator_floor_id: 
            description: >- 
              The UUID of the floor of the locator with the strongest 
              alarm signal strength (if it exists). 
            type: string 
          strongest_locator_unit_name: 
            description: >- 
              The name of the unit of the locator with the strongest 
              alarm signal strength (if it exists). 
            type: string 
          strongest_locator_unit_id: 
            description: >- 
              The UUID of the unit of the locator with the strongest 
              alarm signal strength (if it exists). 
            type: string 
          alternate_locator_floor_name: 
            description: >- 
              The name of the floor of the locator with the second strongest 
              alarm signal strength (if it exists). 
            type: string 
          alternate_locator_floor_id: 
            description: >- 
              The UUID of the floor of the locator with the second strongest 
              alarm signal strength (if it exists). 
            type: string 
          alternate_locator_unit_name: 
            description: >- 
              The name of the unit of the locator with the second strongest 
              alarm signal strength (if it exists). 
            type: string 
          alternate_locator_unit_id: 
            description: >- 
              The UUID of the unit of the locator with the second strongest 
              alarm signal strength (if it exists). 
            type: string 
    device_status: 
      summary: >- 
        Device status message with the status information for a device on a 



 

49 
 

 

Inovonics Cloud Integration Guide 
        site.  Currently only used to indicate inactive locators, repeaters, and 
        gateways.  Statuses other than Inactive/Active are only available for 
        sites in a Senior Living organization. 
      payload: 
        type: object 
        properties: 
          status: 
            description: The status of the device e.g. 'INACTIVE' 
            type: string 
            enum: 
              - INACTIVE 
              - ACTIVE 
              - LOW_BATTERY 
              - RESET 
              - TAMPER 
              - LOSS_OF_POWER 
              - JAMMED 
              - ALARM0 
              - ALARM1 
              - ALARM2 
              - ALARM3 
              - EOL_TAMPER 
              - TEST_ALARM 
              - CLEAN_ME 
              - DEFECTIVE_SENSOR 
              - COMBINED_FAULT 
              - FALL 
              - ALL_CLEAR 
              - RESTORED 
          send_time: 
            description: >- 
              An ISO8601 string in UTC at which device information was 
              published. 
            type: string 
          last_sync_time: 
            description: >- 
              An ISO8601 string in UTC at which the device last synced with the 
              cloud. 
            type: string 
          device_txid: 
            description: >- 
              TXID (transmitter ID) of the locator or repeater that the message 
              pertains to (left blank if gateway). 
            type: integer 
          device_location: 
            description: The location of the device that the message pertains to. 
            type: string 
          device_note: 
            description: The note field of the device. 
            type: string 
          device_model: 
            description: The model of the device. 
            type: string 
          device_type: 
            description: The type of device that the message pertains to. 
            type: string 
            enum: 
              - GATEWAY 
              - REPEATER 
              - LOCATOR 
              - TRANSMITTER 
          organization_name: 



 

50 
 

 

Inovonics Cloud Integration Guide 
            description: The name of the organization that the device belongs to. 
            type: string 
          site_name: 
            description: The name of the site that the device belongs to. 
            type: string 
          building_name: 
            description: >- 
              The name of the building that the device is assigned to (if 
              applicable, left blank otherwise). 
            type: string 
          rfmessage_id: 
            description: >- 
              The RFMessage ID of the actual RF Message that triggered the 
              alert. 
            type: string 
  parameters: 
    site_id: 
      description: >- 
        ID of the site. This can be found in the exported configuration file of 
        the site. 
      schema: 
        type: string 
    username: 
      description: 'Username to authenticate with the MQTT broker, configured for each 
site.' 
      schema: 
        type: string 


	1 Purpose
	2 System Overview
	3 Hardware Components
	3.1 Fixed Transmitters
	3.1.1 Roaming Devices
	3.1.2 Mobile Duress Transmitters
	3.1.3 Asset Tags & Staff Badge

	3.2 Locators
	3.3 Repeaters
	3.4 Gateway

	4 Organization Hierarchy
	4.1 Organizations
	4.2 Users
	4.3 User Types
	4.4 Sites
	4.5 Buildings
	4.6 Floors
	4.7 Floorplan
	4.8 Units
	4.9 Devices

	5 Integration Options
	5.1 API
	5.2 Embedded Widgets
	5.3 Inovonics Cloud Services Web Application

	6 RESTful API
	6.1 Documentation
	6.2 REST API Requirements
	6.3 Request Format
	6.4 Response Format
	6.5 Referencing Objects
	6.6 Enum APIs
	6.7 Import/Export APIs
	6.8  Report APIs
	6.9 Creating Relationships APIs
	6.10  Common API endpoints
	6.10.1 Create a site
	6.10.2 Add a gateway to the site
	6.10.3 Add a building to the site
	6.10.4 Add a floor to the site
	6.10.5 Add a unit to the site
	6.10.6 Add a device to the site
	6.10.7 Associate a floor to a building
	6.10.8 Associate a unit to a floor
	6.10.9 Associate a device to a unit

	6.11 MQTT Feed
	6.11.1 MQTT Integration Setup
	6.11.2 Connecting to the MQTT Broker
	6.11.3 MQTT Subscriptions
	6.11.4 Creating an MQTT Integration

	6.12  API
	6.13 ICS

	7 Feature Guide
	7.1 Advanced Location
	7.1.1 Find Roaming Device
	7.1.1.1 Request (GET)
	7.1.1.2 Request Parameters
	7.1.1.3 Response (Single Location)
	7.1.1.4 Response (Contested Location)

	7.1.2 Find Roaming Device with Multiple Locations
	7.1.2.1 Request (GET)
	7.1.2.2 Request Parameters
	7.1.2.3 Response (Multiple Locations)

	7.1.3 Find All Roaming Device’s Location
	7.1.3.1 Request (GET)
	7.1.3.2 Request Parameters
	7.1.3.3 Response

	7.1.4 Find All Roaming Devices and Multiple Locations
	7.1.4.1 Request (GET)
	7.1.4.2 Request Parameters
	7.1.4.3 Response

	7.1.5 Geofencing
	7.1.5.1 Create / Update a Schedule
	7.1.5.1.1 Request (POST / PUT)
	7.1.5.1.2 Request parameters
	7.1.5.1.3 Request body
	7.1.5.1.4 Response

	7.1.5.2 Retrieve a Schedule
	7.1.5.2.1 Request (GET)
	7.1.5.2.2 Request parameters
	7.1.5.2.3 Response


	7.1.6 Roaming Device Schedules
	7.1.6.1 Create / Update a Unit + Roaming Device Schedule
	7.1.6.1.1 Request (POST / PUT)
	7.1.6.1.2 Request parameters
	7.1.6.1.3 Request body
	7.1.6.1.4 Response

	7.1.6.2 Retrieve a Unit + Roaming Device Schedule
	7.1.6.2.1 Request (GET)
	7.1.6.2.2 Request parameters
	7.1.6.2.3 Response

	7.1.6.3 Site Schedules
	7.1.6.3.1 Request (GET)
	7.1.6.3.2 Request parameters
	7.1.6.3.3 Response


	7.1.7 Breaches
	7.1.7.1 Breach Types
	7.1.7.2 Breach Statuses
	7.1.7.3 Retrieve Breaches for a Roaming Device (Last 24 hours)
	7.1.7.3.1 Request (GET)
	7.1.7.3.2 Request parameters
	7.1.7.3.3 Response

	7.1.7.4 Retrieve a Breach
	7.1.7.4.1 Request (GET)
	7.1.7.4.2 Request parameters
	7.1.7.4.3 Response


	7.1.8 Breach Comments
	7.1.8.1 Create a Breach Comment
	7.1.8.1.1 Request (POST)
	7.1.8.1.2 Request parameters
	7.1.8.1.3 Request body
	7.1.8.1.4 Response

	7.1.8.2 Retrieve Comments for a Breach
	7.1.8.2.1 Request (GET)
	7.1.8.2.2 Request parameters
	7.1.8.2.3 Response



	7.2 Fall Detection for Senior Living
	7.2.1 Overview
	7.2.2 Fall Detection Mode
	7.2.3 Retrieve Fall Detection Mode (API)
	7.2.3.1 Request (GET)
	7.2.3.2 Request Parameters
	7.2.3.3 Response

	7.2.4 Retrieve Fall Detection Mode (MQTT)
	7.2.4.1 Topic
	7.2.4.2 Example (Disabled)
	7.2.4.3 Example (Enabled)



	8  Embedded Widgets
	8.1 Overview
	8.2 Available Widgets
	8.2.1 Find Roaming Device
	8.2.2 Operational Insights Dashboards

	8.3 Authorization
	8.3.1 Request
	8.3.2 Request Parameters
	8.3.3 Response
	8.3.4 Response Fields

	8.4 Requesting a Widget
	8.4.1 Request Structure
	8.4.2 Request Parameters & Headers
	8.4.2.1 Scope
	8.4.2.2 Widget
	8.4.2.3 Scope & Widget compatibility table

	8.4.3 Request Examples
	8.4.4 Response Example

	8.5 Embedding the Widget
	8.5.1 IFrame Settings & Styles


	9 Appendix
	9.1 Connectivity Loss
	9.1.1 Message Examples
	9.1.1.1 Loss of Connection
	9.1.1.2 Inactive


	9.2 Postman
	9.3 Inovonics Hardware Part Numbers
	9.4 MQTT YAML file content


